首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
We carried out a series of replicate experiments on DNA microarrays using two cell lines and two technologies--the Agilent Human 1A Microarray and the GE Amersham Codelink Uniset Human 20K I Bioarray. We demonstrated that quantifying the noise level as a function of signal strength allows identification of the absolute and differential mRNA expression levels at which biological variability can be resolved above measurement noise. This represents a new formulation of a sensitivity threshold that can be used to compare platforms. It was found that the correlation in expression level between platforms is considerably worse than the correlation between replicate measurements taken using the same platform. In addition, we carried out replicate measurements at different stages of sample processing. This novel approach enables us to quantify the noise introduced into the measurements at each step of the experimental protocol. We demonstrated how this information can be used to determine the most efficient means of using replicates to reduce experimental uncertainty.  相似文献   

3.
This paper examines the selection of the appropriate representation of chromatogram data prior to using principal component analysis (PCA), a multivariate statistical technique, for the diagnosis of chromatogram data sets. The effects of four process variables were investigated; flow rate, temperature, loading concentration and loading volume, for a size exclusion chromatography system used to separate three components (monomer, dimer, trimer). The study showed that major positional shifts in the elution peaks that result when running the separation at different flow rates caused the effects of other variables to be masked if the PCA is performed using elapsed time as the comparative basis. Two alternative methods of representing the data in chromatograms are proposed. In the first data were converted to a volumetric basis prior to performing the PCA, while in the second, having made this transformation the data were adjusted to account for the total material loaded during each separation. Two datasets were analysed to demonstrate the approaches. The results show that by appropriate selection of the basis prior to the analysis, significantly greater process insight can be gained from the PCA and demonstrates the importance of pre-processing prior to such analysis.  相似文献   

4.
Wigle DA  Rossant J  Jurisica I 《Genome biology》2001,2(7):reviews1019.1-reviews10194
Microarrays of mouse genes are now available from several sources, and they have so far given new insights into gene expression in embryonic development, regions of the brain and during apoptosis. Microarray data posted on the internet can be reanalyzed to study a range of questions.  相似文献   

5.
Normalizing DNA microarray data   总被引:1,自引:0,他引:1  
  相似文献   

6.
Gene expression microarrays are a relatively new technology, dating back just a few years, yet they have already become a very widely used tool in biology, and have evolved to a wide range of applications well beyond their original design intent. However, while the use of microarrays has expanded, and the issues of performance optimization have been intensively studied, the fundamental issue of data integrity management has largely been ignored. Now that performance has improved so greatly, the shortcomings of data integrity control methods constitute a greater percent of the stumbling blocks for investigators. Microarray data are cumbersome, and the rule up to this point has mostly been one of hands-on transformations, leading to human errors which often have dramatic consequences. We show in this review that the time lost on such mistakes is enormous and dramatically affects results; therefore, mistakes should be mitigated in any way possible. We outline the scope of the data integrity issue, to survey some of the most common and dangerous data transformations, and their shortcomings. To illustrate, we review some case studies. We then look at the work done by the research community on this issue (which admittedly is meager up to this point). Some data integrity issues are always going to be difficult, while others will become easier-one of our goals is to expedite the use of integrity control methods. Finally, we present some preliminary guidelines and some specific approaches that we believe should be the focus of future research.  相似文献   

7.
8.
MOTIVATION: Most supervised classification methods are limited by the requirement for more cases than variables. In microarray data the number of variables (genes) far exceeds the number of cases (arrays), and thus filtering and pre-selection of genes is required. We describe the application of Between Group Analysis (BGA) to the analysis of microarray data. A feature of BGA is that it can be used when the number of variables (genes) exceeds the number of cases (arrays). BGA is based on carrying out an ordination of groups of samples, using a standard method such as Correspondence Analysis (COA), rather than an ordination of the individual microarray samples. As such, it can be viewed as a method of carrying out COA with grouped data. RESULTS: We illustrate the power of the method using two cancer data sets. In both cases, we can quickly and accurately classify test samples from any number of specified a priori groups and identify the genes which characterize these groups. We obtained very high rates of correct classification, as determined by jack-knife or validation experiments with training and test sets. The results are comparable to those from other methods in terms of accuracy but the power and flexibility of BGA make it an especially attractive method for the analysis of microarray cancer data.  相似文献   

9.
Normalization of cDNA microarray data   总被引:43,自引:0,他引:43  
Normalization means to adjust microarray data for effects which arise from variation in the technology rather than from biological differences between the RNA samples or between the printed probes. This paper describes normalization methods based on the fact that dye balance typically varies with spot intensity and with spatial position on the array. Print-tip loess normalization provides a well-tested general purpose normalization method which has given good results on a wide range of arrays. The method may be refined by using quality weights for individual spots. The method is best combined with diagnostic plots of the data which display the spatial and intensity trends. When diagnostic plots show that biases still remain in the data after normalization, further normalization steps such as plate-order normalization or scale-normalization between the arrays may be undertaken. Composite normalization may be used when control spots are available which are known to be not differentially expressed. Variations on loess normalization include global loess normalization and two-dimensional normalization. Detailed commands are given to implement the normalization techniques using freely available software.  相似文献   

10.
11.
Computational analysis of microarray data   总被引:1,自引:0,他引:1  
Microarray experiments are providing unprecedented quantities of genome-wide data on gene-expression patterns. Although this technique has been enthusiastically developed and applied in many biological contexts, the management and analysis of the millions of data points that result from these experiments has received less attention. Sophisticated computational tools are available, but the methods that are used to analyse the data can have a profound influence on the interpretation of the results. A basic understanding of these computational tools is therefore required for optimal experimental design and meaningful data analysis.  相似文献   

12.
Analysis of microarray experiments is complicated by the huge amount of data involved. Searching for groups of co-expressed genes is akin to searching for protein families in a database as, in both cases, small subsets of genes with similar features are to be found within vast quantities of data. CLANS was originally developed to find protein families in large sets of amino acid sequences where the amount of data involved made phylogenetic approaches overly cumbersome. We present a number of improvements that greatly extend the previous version of CLANS and show its application to microarray data as well as its ability of incorporating additional information to facilitate interactive analysis. AVAILABILITY: The program is available for download from: http://bioinfoserver.rsbs.anu.edu.au/downloads/clans/  相似文献   

13.
Mayday is a workbench for visualization, analysis and storage of microarray data. It features a graphical user interface and supports the development and integration of existing and new analysis methods. Besides the infrastructural core functionality, Mayday offers a variety of plug-ins, such as various interactive viewers, a connection to the R statistical environment, a connection to SQL-based databases and different data mining methods, including WEKA-library based methods for classification and various clustering methods. In addition, so-called meta information objects are provided for annotation of the microarray data allowing integration of data from different sources, which is a feature that, for instance, is employed in the enhanced heatmap visualization. Supplementary information: The software and more detailed information including screenshots and a user guide as well as test data can be found on the Mayday home page http://www.zbit.uni-tuebingen.de/pas/mayday. The core is published under the GPL (GNU Public License) and the associated plug-ins under the LGPL (Lesser GNU Public License).  相似文献   

14.
Statistical methods and microarray data   总被引:1,自引:0,他引:1  
Klebanov L  Qiu X  Welle S  Yakovlev A 《Nature biotechnology》2007,25(1):25-6; author reply 26-7
  相似文献   

15.
16.
Microarray gene expression data is used in various biological and medical investigations. Processing of gene expression data requires algorithms in data mining, process automation and knowledge discovery. Available data mining algorithms exploits various visualization techniques. Here, we describe the merits and demerits of various visualization parameters used in gene expression analysis.  相似文献   

17.
Microarray technology is associated with many sources of experimentaluncertainty. In this review we discuss a number of approachesfor dealing with this uncertainty in the processing of datafrom microarray experiments. We focus here on the analysis ofhigh-density oligonucleotide arrays, such as the popular AffymetrixGeneChip® array, which contain multiple probes for eachtarget. This set of probes can be used to determine an estimatefor the target concentration and can also be used to determinethe experimental uncertainty associated with this measurement.This measurement uncertainty can then be propagated throughthe downstream analysis using probabilistic methods. We giveexamples showing how these credibility intervals can be usedto help identify differential expression, to combine informationfrom replicated experiments and to improve the performance ofprincipal component analysis.   相似文献   

18.
Adjustment of systematic microarray data biases   总被引:6,自引:0,他引:6  
MOTIVATION: Systematic differences due to experimental features of microarray experiments are present in most large microarray data sets. Many different experimental features can cause biases including different sources of RNA, different production lots of microarrays or different microarray platforms. These systematic effects present a substantial hurdle to the analysis of microarray data. RESULTS: We present here a new method for the identification and adjustment of systematic biases that are present within microarray data sets. Our approach is based on modern statistical discrimination methods and is shown to be very effective in removing systematic biases present in a previously published breast tumor cDNA microarray data set. The new method of 'Distance Weighted Discrimination (DWD)' is shown to be better than Support Vector Machines and Singular Value Decomposition for the adjustment of systematic microarray effects. In addition, it is shown to be of general use as a tool for the discrimination of systematic problems present in microarray data sets, including the merging of two breast tumor data sets completed on different microarray platforms. AVAILABILITY: Matlab software to perform DWD can be retrieved from https://genome.unc.edu/pubsup/dwd/  相似文献   

19.
Leung YF  Lam DS  Pang CP 《Genome biology》2001,2(9):reports4021.1-reports40212
A report on the tenth Annual Bioinformatics and Genome Research meeting of the Cambridge Healthtech Institute's Beyond Genome 2001 series, San Francisco, USA, 17-19 June 2001.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号