首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Carr M 《Genetica》2008,132(2):113-122
The Diopsid stalk-eyed flies are an increasingly well-studied group. Presented here is evidence of the first known transposable elements discovered in these flies. The vertumnana mariner subfamily was identified in the Diopsini tribe, but could not be amplified in species of the Sphyracephalini tribe. PCR screening with degenerate primers revealed that multiple mariner subfamilies are present within the Diopsidae. Most of the sequenced elements appear to be pseudogenes; however two subfamilies are shown to be evolving under purifying selection, raising the possibility that mariner is active in some Diopsid species. Evidence is presented of a possible horizontal transfer event involving an unknown Teleopsis species and the Tephritid fly Bactrocera neohumeralis. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
P. Capy  J. R. David  D. L. Hartl 《Genetica》1992,86(1-3):37-46
The population biology and molecular evolution of the transposable element mariner has been studied in the eight species of the melanogaster subgroup of the Drosophila subgenus Sophophora. The element occurs in D. simulans, D. mauritiana, D. sechellia, D. teissieri, and D. yakuba, but is not found in D. melanogaster, D. erecta, or D. orena. Sequence comparisons suggest that the mariner element was present in the ancestor of the species subgroup and was lost in some of the lineages. Most species contain both active and inactive mariner elements. A deletion of most of the 3 end characterizes many elements in D. teissieri, but in other species the inactive elements differ from active ones only by simple nucleotide substitutions or small additions/deletions. Active mariner elements from all species are quite similar in nucleotide sequence, although there are some-species-specific differences. Many, but not all, of the inactive elements are also quite closely related. The genome of D. mauritiana contains 20–30 copies of mariner, that of D. simulans 0–10, and that of D. sechellia only two copies (at fixed positions in the genome). The mariner situation in D. sechellia may reflect a reduced effective population size owing to the restricted geographical range of this species and its ecological specialization to the fruit of Morinda citrifolia.  相似文献   

3.
Summary Foldback elements are a family of transposable elements described inDrosophila melanogaster. The members of this dispersed repetitive family have terminal inverted repeats that sometimes flank a central region. The inverted repeats of all the family members are homologous.The study of the distribution and conservation of the foldback elements in differentDrosophila species shows that this distribution is different from that of the hybrid dysgenesis systems (PM and IR). Sequences homologous to foldback elements were observed by Southern blots and in situ hybridization in all species of themelanogaster subgroup and in some species of themontium andtakahashii subgroups. The element was probably already present before the radiation of these subgroups. No evidence of horizontal transmission of the foldback element could be observed.  相似文献   

4.
Summary The abundance of the transposable elementmariner differs dramatically in the genomes of the closely related speciesDrosophila simulans, D. mauritiana, D. sechellia, andD. melanogaster. Natural populations ofD. simulans andD. mauritiana have 1–10 and 20–30 copies per diploid genome, respectively, and the insertion sites are polymorphic. The element has not been found inD. melanogaster. In this paper we show thatD. sechellia, a species endemic to the Seychelles Islands, contains only twomariner elements that are at fixed sites in the genome. One element, inserted in chromosome 2R at 51A1–2, contains three deletions and is missing much of the 3 end. The other element, inserted in chromosome 3L at 64A10–11, is the full length of 1286 bp. Although the sequence of the full-length element is polymorphic in populations ofD. sechellia, at least some of the sequences are closely related to elements fromD. simulans andD. mauritiana that are known to be active. However, judging from the progeny of crosses betweenD. sechellia andD. simulans, the biological activity of the full-lengthD. sechellia element appears to be low, either because of the nucleotide sequence of the element or because of its position in the genome, or both.  相似文献   

5.

Background

The mariner family of transposable elements is one of the most widespread in the Metazoa. It is subdivided into several subfamilies that do not mirror the phylogeny of these species, suggesting an ancient diversification. Previous hybridization and PCR studies allowed a partial survey of mariner diversity in the Metazoa. In this work, we used a comparative genomics approach to access the genus-wide diversity and evolution of mariner transposable elements in twenty Drosophila sequenced genomes.

Results

We identified 36 different mariner lineages belonging to six distinct subfamilies, including a subfamily not described previously. Wide variation in lineage abundance and copy number were observed among species and among mariner lineages, suggesting continuous turn-over. Most mariner lineages are inactive and contain a high proportion of damaged copies. We showed that, in addition to substitutions that rapidly inactivate copies, internal deletion is a major mechanism contributing to element decay and the generation of non-autonomous sublineages. Hence, 23% of copies correspond to several Miniature Inverted-repeat Transposable Elements (MITE) sublineages, the first ever described in Drosophila for mariner. In the most successful MITEs, internal deletion is often associated with internal rearrangement, which sheds light on the process of MITE origin. The estimation of the transposition rates over time revealed that all lineages followed a similar progression consisting of a rapid amplification burst followed by a rapid decrease in transposition. We detected some instances of multiple or ongoing transposition bursts. Different amplification times were observed for mariner lineages shared by different species, a finding best explained by either horizontal transmission or a reactivation process. Different lineages within one species have also amplified at different times, corresponding to successive invasions. Finally, we detected a preference for insertion into short TA-rich regions, which appears to be specific to some subfamilies.

Conclusions

This analysis is the first comprehensive survey of this family of transposable elements at a genus scale. It provides precise measures of the different evolutionary processes that were hypothesized previously for this family based on PCR data analysis. mariner lineages were observed at almost all “life cycle” stages: recent amplification, subsequent decay and potential (re)-invasion or invasion of genomes.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-727) contains supplementary material, which is available to authorized users.  相似文献   

6.
The cloning and characterization ofGandalf, a new DNA-transposing mobile element obtained from theDrosophila koepferae (repleta group) genome is described. A fragment ofGandalf was found in a middle repetitive clone that shows variable chromosomal localization. Restriction, Southern blot, PCR and sequencing analyses have shown that mostGandalf copies are about 1 kb long, are flanked by 12 by inverted terminal repeats and contain subterminal repetitive regions on both sides of the element. As with other elements of the DNA-transposing type (known as the Ac family), theGandalf element generates 8 by direct duplications at the insertion point. Coding region analysis has shown that the longer open reading frame found inGandalf copies could encode part of a protein. However, whether or not the 1 kb copies of the element are actually the active transposons remains to be elucidated.Gandalf shows a very low copy number inD. buzzatii, a sibling species ofD. koepferae. An attempt to induce interspecific hybrid dysgenesis in hybrids of these two species has been unsuccessful.  相似文献   

7.
In this study the Minos element was analyzed in 26 species of the repleta group and seven species of the saltans group of the genus Drosophila. The PCR and Southern blot analysis showed a wide occurrence of the Minos transposable element among species of the repleta and the saltans groups and also a low number of insertions in both genomes. Three different analyses, nucleotide divergence, historical associations, and comparisons between substitution rates (d(N) and d(S)) of Minos and Adh host gene sequences, suggest the occurrence of horizontal transfer between repleta and saltans species. These data reinforce and extend the Arca and Savakis [Genetica 108 (2000) 263] results and suggest five events of horizontal transfer to explain the present Minos distribution: between D. saltans and the ancestor of the mulleri and the mojavensis clusters; between D. hydei and the ancestor of the mulleri and the mojavensis clusters; between D. mojavensis and D. aldrichi; between D. buzzatii and D. serido; and between D. spenceri and D. emarginata. An alternative explanation would be that repeated events of horizontal transfer involving D. hydei, which is a cosmopolitan species that diverged from the others repleta species as long as 14Mya, could have spread Minos within the repleta group and to D. saltans. The data presented in this article support a model in which distribution of Minos transposon among Drosophila species is determined by horizontal transmission balanced by vertical inactivation and extinction.  相似文献   

8.
Summary The unstable mutant bz-x3m arose in a plant subjected to X-irradiation. The element at the bronze locus is non-autonomous and recombination data indicate that an autonomous element is tightly linked. The autonomous element has been designated Mx (mobile element induced by X-rays) and the non-autonomous element, rMx (responder to Mx). Linkage data indicate that a second Mx lies near the end of the short arm of chromosome 9; in one plant, an Mx that is unlinked was detected. Distinguishing characteristics of bz-x3m are a large window of time in endosperm development during which somatic reversions can arise and a wide range in the frequency at which they occur; these features are heritable. With increasing doses of bz-x3m and Mx, the window expands and the frequency range increases. In kernels containing the bz-x3m allele and the tightly linked Mx, breakage occurs in chromosome 9 distal to the C locus, resulting in breakage-fusion-bridge patterns for endosperm markers that lie proximal to the break. The frequency of breaks and the developmental time at which they occur exhibit the same dosage effect as the somatic reversions of the bz-x3m allele. These observations suggest that an rMx (designated rMxBr) that causes chromosome breakage is positioned distal to the C locus. At the molecular level, the bz-x3m allele is associated with a 0.5 kb increase in fragment size in DNA samples digested with BglII, EcoRI, HindIII and PstI; in germinal revertants, the fragment size returns to that of the progenitor.  相似文献   

9.
Summary Previous experiments have revealed that the maize transposable element Activator (Ac) may become active during tissue culture. The objective of the present study was to determine whether a second transposable element, Suppressor-mutator (Spm), could also be activated in tissue culture and detected in regenerated maize plants. Approximately 500 R1 progeny of 143 regenerated plants (derived from 49 embryo cell lines) were crossed as males onto an Spm-responsive tester stock. Spm activity was observed in two R1 progeny of a single regenerated plant. This plant had been regenerated from Type II (friable embryogenic) callus of an A188 × B73 genetic background after 8 months in culture; the absence of Spm activity in four other plants regenerated from this same callus demonstrates that Spm activity was not present before culturing. Approximately 20 Spm-homologous DNA sequences were detected in each of the inbreds used to initiate the tissue cultures; it is presumed that one of these became active to give rise to Spm activity.  相似文献   

10.
11.
Summary The two components of theBg-rbg transposable element system of maize have been cloned. TheBg element, isolated from the mutable allelewx-m32 :: Bg is inserted in the intron of theWaxy (Wx) gene between exons 12 and 13. The length of the element is of 4869 bp.Bg has 5 by terminal inverted repeats, and generates upon insertion an 8 by direct duplication of the target sequence. Both ends of theBg element contain a 76 by direct repeat adjacent to the terminal inverted repeats. The hexamer motif TATCGkC G is here repeated several times in direct or inverse orientation. Therbg element was isolated from the mutable alleleo2m(r) where it is located in the promoter region of theOpaque-2 (O2) gene.rbg is approximately 4.5 kb in length, has terminal inverted repeats identical to those of theBg element, and is also flanked by an 8 by direct duplication at the target site. LikeBg, rbg carries the 76 by direct repeats. Restriction enzyme analysis reveals that, compared toBg, the receptor element is distinguishable by small deletion and insertion events. Sequence data indicate that not more than 75% homology exists at the DNA level between therbg element and the autonomousBg element.  相似文献   

12.
Summary In Antirrhinum majus the transposable element Tam3 has been described at two unlinked loci pallida and nivea, both of which are required for the production of anthocyanin pigment in flowers. In each case the element is inserted in the promoter region and gives a variegated phenotype. We show that the rate of Tam3 excision at both loci is greatly affected by temperature, being approximately 1000-fold higher at 15°C compared with 25°C. Tam3 is also controlled by an unlinked gene Stabiliser, which considerably reduces excision rate. We show that the high degree of sensitivity to temperature and Stabiliser is an intrinsic property of Tam3 which is not shared by an unrelated element, Tam1. The Tam3 insertion at nivea gives rise to a series of alleles which confer reduced pigmentation, novel spatial patterns and changed instability. These are probably a result of imprecise excision and rearrangements of the Tam3 element.  相似文献   

13.
Mobility of the hobo transposable element was determined for several strains of Drosophila melanogaster and several Drosophila species. Mobility was assessed by use of an in vivo transient assay in the soma of developing embryos, which monitored hobo excision from injected indicator plasmids. Excision was detected in a D. melanogaster strain (cn; ry 42) devoid of endogenous hobo elements only after co-injection of a helper plasmid containing functional hobo transposase under either heat shock or normal promoter regulation. Excision was also detected in D. melanogaster without helper in strains known to contain genomic copies of hobo. In Drosophila species confirmed not to contain hobo, hobo excision occurred at significant rates both in the presence and absence of co-injected helper plasmid. In four of the seven species tested, excision frequencies were two- to fivefold lower in the presence of plasmid-borne hobo. hobo excision donor sites were sequenced in indicator plasmids extracted from D. melanogaster cn; ry 42 and D. virilis embryos. In the presence of hobo transposase, the predominant excision sites were identical in both species, having breakpoints at the hobo termini with an inverted duplication of proximal insertion site DNA. However, in the absence of hobo transposase in D. virilis, excision breakpoints were apparently random and occurred distal to the hobo termini. The data indicate that hobo is capable of functioning in the soma during embryogenesis, and that its mobility is unrestricted in drosophilids. Furthermore, drosophilids not containing hobo are able to mobilize hobo, presumably by a hobo-related cross-mobilizing system. The cross-mobilizing system in D. virilis is not functionally identical to hobo with respect to excision sequence specificity.  相似文献   

14.
15.
Summary The Bz2 locus of Zea mays has been cloned, utilizing the presence of the transposable element Dissociation (Ds) at the locus as a gene tag. The Ds element inserted in the bz2-m allele was identified among many members of the Ac/Ds family in a Southern blot analysis of a population segregating for bz2-m and Bz2. After cloning a DNA fragment from the bz2-m allele, sequences flanking the Ds insertion were shown to be Bz2-specific and were used to isolate a homologous fragment from a wild-type Bz2 line. The Ds insertion in the bz2-m allele was found to be a Ds2 element identical to the Ds insertion in adh1-2F11.  相似文献   

16.
We have used phylogenetic techniques to study the evolutionary history of the Penelope transposable element in the Drosophila virilis species group. Two divergent types of Penelope have been detected, one previously described, clade I, and a new one which we have termed clade III. The phylogeny of some copies of the Penelope clade I element was partially consistent with the species phylogeny of the D. montana subphylad, suggesting cospeciation and allowing the estimation of the evolutionary rate of Penelope. Divergence times of elements found in different species are younger than the age of the species, suggesting horizontal transfer events. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users. [Reviewing Editor: Dr. Dmitri Petrov]  相似文献   

17.
C. Biémont 《Genetica》1992,86(1-3):67-84
This paper is an attempt to bring together the various, dispersed data published in the literature on insertion polymorphism of transposable elements from various kinds of populations (natural populations, laboratory strains, isofemale and inbred lines). Although the results deal mainly with Drosophila, data on other organisms have been incorporated when necessary to illustrate the discussion. The data pertinent to the regions of insertion, the rates of transposition and excision, the copy number regulation, and the degree of heterozygosity were analysed in order to be confronted with the speculations made with various theoretical models of population biology of transposable elements. The parameters of these models are very sensitive to the values of the transposable element characteristics estimated on populations, and according to the difficulties of these estimations (population not at equilibrium, particular mutations used to estimate the transposition and excision rates, trouble with the in situ technique used to localize the insertions, undesired mobilization of TEs in crosses, spontaneous genome resetting, environmental effects, etc.) it cannot be decided accurately which model better accounts for the population dynamics of these TEs. Tendencies, however, emerge in Drosophila: the copia element shows evidence for deficiency of insertions on the X chromosomes, a result consistent with selection against mutational effects of copia insertions; the P element repartition does not significantly deviate from the neutral assumption, in spite of a systematic copy number of insertions higher on the X than on the autosomes. Data on other elements support either the neutral model of TE containment, neither of the two models, or both. Prudence in conclusion should then be de rigueur when dealing with such kind of data. Finally the potential roles of TEs in population adaptation and evalution are discussed.  相似文献   

18.
Summary A 2.1-kb SStI fragment including the rp49 gene and the 3 end of the -serendipity gene has been cloned and sequenced in Drosophila pseudoobscura. rp49 maps at region 62 on the tip of chromosome II of this species. Both the coding and flanking regions have been aligned and compared with those of D. subobscura. There is no evidence for heterogeneity in the rate of silent substitution between the rp49 coding region and the rate of substitutions in flanking regions, the overall silent divergence per site being 0.19. Noncoding regions also differ between both species by different insertions/deletions, some of which are related to repeated sequences. The rp49 region of D. pseudoobscura shows a strong codon bias similar to those of D. subobscura and D. melanogaster. Comparison of the rates of silent (K S ) and nonsilent (K a ) substitutions of the rp49 gene and other genes completely sequenced in D. pseudoobscura and D. melanogaster confirms previous results indicating that rp49 is evolving slowly both at silent and nonsilent sites. According to the data for the rp49 region, D. pseudoobscura and D. subobscura lineages would have diverged some 9 Myr ago, if one assumes a divergence time of 30 Myr for the melanogaster and obscura groups.Offprint requests to: C. Segarra  相似文献   

19.
Summary When Drosophila melanogaster males coming from a class of strains known as inducer are crossed with females from the complementary class (reactive), a quite specific kind of sterility is observed in the F1 female progeny (denoted SF). The inducer chromosomes differ from the reactive chromosomes by the presence of a transposable element (called the I factor) that is responsible for the induction of this dysgenic symptom. In the germ line of dysgenic females, up to 100% of the reactive chromosomes may be contaminated, i.e. they acquire I factor(s) owing to very frequent replicative transpositions. A contaminated reactive stock was obtained by reconstructing the reactive genotype in the offspring of SF females and its kinetics of invasion by I elements was followed in the successive inbred dysgenic generations. The results show that the mean copy number of I elements increased very quickly up to the level of inducer strains and then stayed in equilibrium even though the dysgenic state was perpetuated by selection for SF sterility at every generation. The possible mechanisms of this copy number limitation are discussed.  相似文献   

20.
The complete DNA sequence of three independent isolates of Uhu, a member of the Tc1-like class of transposable elements from D. heteroneura (Uhu-1, Uhu-3, and Uhu-4), has been determined. These isolates have between 95 and 96.4% nucleotide sequence identity indicating that Uhu is well conserved within this species. A comparison of the DNA sequences of Uhu and the D. melanogaster Hb1 transposable element shows that the nucleotide substitution rate for Uhu is comparable to the synonymous rate for the Adh gene in these species. Uhu has been identified in four other species of endemic Hawaiian Drosophila, D. silvestris, D. differens, D. planitibia and D. picticornis, and nine Uhu elements were isolated from genomic libraries of these four species. A 444 base pair region from within the coding region of the Uhu element, with well conserved ends, was amplified by the polymerase chain reaction and used for sequence comparison of elements from different species. The analysis of the sequence similarities between the elements within and between the species shows a grouping of the two pairs of most closely related species (D. heteroneura and D. silvestris, and D. differens and D. planitibia), but shows a much larger variation within the most recently diverged species (D. heteroneura and D. silvestris) than expected. There are extensive nucleotide substitutions and deletions in the Uhu elements from D. picticornis showing that they are degenerating and being lost in this species. These observations indicate that the Uhu element has been transmitted vertically and that transposition may have been activated at the time of formation of each species as it colonized the newly formed islands of the Hawaiian archipelago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号