首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
pullulan, a water soluble extracellular polysaccharide, was produced by downstream fermentation employing the strain Aureobasidium pullulans. To obtain pure biopolymer from the fermentation broth, it is necessary to harvest cells, heat the broth, remove the melanin pigments co-produced during fermentation, concentration, precipitate and dry. Centrifugation of the fermentation broth at 10,000 rpm for 15 min gave cell pellets that were discarded and a green–black supernatant containing melanin pigment was subjected to the heat treatment at 80 °C for 20 min in order to remove the protein in the fermentation broth. The supernatant was demelanized by oxidation with hydrogen peroxide, concentrated under vacuum, precipitated with ethanol and dried at 60 °C for 30 min. This procedure produced high purity pullulan that was comparable in color and texture to the commercial samples.  相似文献   

2.
The production of enterocin 1146, a bacteriocin from Enterococcus faecium DPC1146, was studied during batch fermentation at pH 5, 5.5, 6 and 6.5. The bacteriocin was produced throughout the growth of the micro-organism, showing primary metabolite kinetics. Bacteriocin production stopped at the end of growth and was followed by a decrease in activity due primarily to adsorption on the cells of the producer. The optimal pH for enterocin 1146 production was 5.5, because of higher bacteriocin yield per unit of biomass and slower adsorption/degradation, while optimal pH for growth was between 6.0 and 6.5.  相似文献   

3.
二价阳离子对短梗霉多糖发酵的影响   总被引:3,自引:0,他引:3  
就二价阳离子对短梗霉多糖和黑色素的影响进行了分析和研究。结果表明 ,二价阳离子对短梗霉多糖的合成和黑色素的形成均有较大的影响。通过对培养基中二价阳离子含量和种类的控制不仅可以抑制细胞黑色素的形成 ,而且还保持了很高的多糖发酵水平 ,在 30L生物反应器中短梗霉多糖的产量和转化率分别达到了 59 8g/L和 61 5%。  相似文献   

4.
本文利用重组大肠杆菌以甘油为底物发酵合成3.羟基丙酸,考察了不同pH对3.羟基丙酸产量及菌体生长的影响,发现在pH6.5条件下,细胞比生长速率达到最大值,延迟期也相对较短;而pH7.0有利于3-羟基丙酸的合成,控制pH7.0可以使3-羟基丙酸产量达到7.39g/L。基于不同pH条件下对细胞比生长速率和3-羟基丙酸比生成速率的分析,提出3.羟基丙酸分批发酵过程中的pH控制策略,即在发酵过程前5h将pH控制在6.5,5h~15h控制pH为7.0,此时有利于细胞生长;而后在15h-25h控制pH为7.5,25h后控制pH为7.0,从而使细胞具有较高的3.羟基丙酸比合成速率。在此控制策略下经过34h发酵3-羟基丙酸的终产量达到8.76g/L,比pH7.0条件下的3-羟基丙酸产量提高了18.54%。  相似文献   

5.
Segers  L.  Verstrynge  L.  Verstraete  W. 《Biotechnology letters》1981,3(11):635-640
Summary The product patterns were analyzed for sucrose, fermented by non-axenic continuous cultures, at different pH-values. At pH 4.0–4.5, ethanol was the dominant metabolite. Butyric acid dominated between pH 4.5 and 5.0 while a mixed volatile acid pattern occured at higher pH-values. Hydrogen gas production appeared to be associated with butyric acid and never represented more then 6.5 % of the reducing equivalents of the feed.  相似文献   

6.
Influence of impeller speed upon the pullulan fermentation   总被引:4,自引:0,他引:4  
Summary The effect of impeller speed on pullulan production and the morphology ofAureobasidium pullulans in batch culture was studied. Pullulan production and the percentage of yeast cells in the culture rose with impeller speed, as did molecular weight of the polysaccharide.  相似文献   

7.
8.
West TP  Strohfus B 《Microbios》1999,99(394):147-159
Pullulan production by Aureobasidium pullulans ATCC 201253 using selected nitrogen sources was studied in a medium using corn syrup as a carbon source. Independent of the corn syrup concentration present, the use of corn steep liquor or hydrolysed soy protein as a nitrogen source instead of ammonium sulphate did not elevate polysaccharide production by ATCC 201253 cells grown in an aerated, batch bioreactor containing 4 litres of medium. Pullulan production on corn steep liquor or hydrolysed soy protein as a nitrogen source became more comparable as the concentration of corn syrup was increased. Cell weights after 7 days of growth on any of the nitrogen sources were similar. The viscosity of the polysaccharide on day 7 was highest for cells grown on ammonium sulphate and 12.5% corn syrup. The pullulan content of the polysaccharide elaborated by ammonium sulphate-grown cells on day 7 decreased as the corn syrup level rose in the medium while the pullulan content of polysaccharide produced by cells grown on corn steep liquor or soytone generally increased.  相似文献   

9.
Summary In pullulan production from sucrose byAureobasidium pullulans, a sugar concentration higher than 5% (w/v) inhibited cell growth and the production of exopolysaccharide. By a fed-batch fermentation, the inhibitory effects of the high sugar concentration were overcome and 58.0 g/1 of exopolysaccharide were obtained from 10% sucrose.Abbreviations m, n relationship parameters for the growth and non-growth associated product formation - X, Xmax biomass and maximum biomass concentration (g cell/1) - P product concentration (g exopolysaccharide/1) - specific growth rate of cell (hr–1)  相似文献   

10.
The hydrodynamical and optical properties of DNA were investigated in the wide-range of pH by the methods of streaming birefringence, viscometry and spectrophotometry for the different ionic strengths of environment. The measurements of the intrinsic viscosity as a function of pH allow us to determine the compactization of protonated DNA without the destruction of double-helical conformation. This transition is accompanied by a decrease in the optical anisotropy of DNA and the coefficient of molar extinction E260 (P). The increase of volume and persistence length of DNA was observed in the alkaline range of pH. Analyses of experimental data lead to an assumption that the predominant cause of these effects is the change of flexibility of DNA as a result of ionization of its bases. The data obtained were compared with those for polycationic molecules.  相似文献   

11.
Summary Clostridium acetobutylicum was grown in fed-batch cultures at different feeding rates of glucose. The sugar converted to butanol and acetone increased with increasing the glucose flow, on the contrary the conversion to butyric acid was highest at slow glucose feeding rate. The acetic acid concentration was constant at the different flows of glucose. The solventogenesis was not inhibited at high flow of sugar.  相似文献   

12.
The influence of environmental pH on the regulation of glucose catabolism by Lactobacillus reuteri was examined in anaerobic batch cultures. Under acidic conditions both glucose consumption and end-products formation were low. Maximum biomass was reached at pH 5·0, with a specific growth rate of µ= 0·78 h-1. The shift in pH values from 4.3 to 6.5 reflected an increase in glucose uptake as well as in the yield ( Y p/x) of acetate, lactate and ethanol after 12 h of incubation. Ethanol was the major metabolite produced at all pH values assayed.  相似文献   

13.
Effect of pH on growth of mixed cultures in batch reactor   总被引:2,自引:0,他引:2  
This work has studied the effect of pH on specific growth rate mu, yield factor Y, and specific substrate consumption rate U for two mixed microbial populations (sludge A and B) in a batch reactor with a limiting substrate (phenol). The mathematical analysis of mu and U as a function of pH has been applied not only to the results of the present work but also to other published data. On the basis of the results obtained, the following remarks can be made: (a) The effect of pH on bacterial activity differed for the two sludges; (b) variations in pH of one unit more or less than optimum pH can give rise to appreciable variations in mu and U; and (c) with regard to the mixed populations used in this study, the mu or U and pH data for the range investigated can be suitably described by a parabolic relation.  相似文献   

14.
15.
Kim DH  Kim SH  Jung KW  Kim MS  Shin HS 《Bioresource technology》2011,102(18):8646-8652
The effect of initial pH from 5.0 to 9.0 on H2 fermentation of food waste was investigated. In this batch experiment, however, unlike previous studies for initial pH, operational pH was maintained at 5.0 by the addition of alkaline solution. Although the period for pH drop from the initial values to 5.0 was less than one-tenth of the entire fermentation, this short period significantly affected the H2 production performance. At initial pH 6.0-9.0, successful H2 yield of 1.3-1.9 mol H2/mol hexoseadded was achieved with a peak value at pH 8.0. The H2 yield achieved at initial pH 8.0 was corresponded to the 8.13% of total energy content in the substrate. At initial pH 5.0, the smallest butyrate production, but the highest ethanol production was detected, indicating unfavorable conditions for H2 production. There was no significant relationship between total required amount of alkaline solution and initial pH values.  相似文献   

16.
The values of fermentation parameters calculated from the measured concentrations of substrates and/or products may be significantly affected by the volume of biomass in the fermenting medium. Corrections proposed in this paper should be evaluated and, depending on their magnitude, considered in order to obtain more representative results.  相似文献   

17.
Borzani W 《Biotechnology letters》2003,25(22):1953-1956
The values of fermentation parameters calculated from the measured concentrations of substrates and/or products may be significantly affected by the volume of biomass in the fermenting medium. Corrections proposed in this paper should be evaluated and, depending on their magnitude, considered in order to obtain more representative results.  相似文献   

18.
Information on the interaction between mixed populations in the rumen and plant phenolics is required to fully elucidate the limitations of phenolic compounds on forage digestibility. The objective of this study was to examine the degradation of Italian ryegrass (Lolium multiflorum L.) hay incubated with mixed ruminal populations in consecutive batch culture (CBC) with or without phenolic acids or phenolic compounds extracted from plant cell walls. Each CBC consisted of a series of 10 cultures (3 replicates per culture) inoculated (10%, vol/vol) in sequence at 48-h intervals with microbial suspension from the previous set of cultures. All cultures were grown on a semidefined medium containing Italian ryegrass hay, and each CBC was initiated with an inoculum from the rumen. Rumenlike fermentation characteristics were maintained in control CBCs by repeated inoculum transfer. Treatment CBCs were transferred as described above, but cultures 5, 6, and 7 were incubated in the presence of trans-p-coumaric, cis-p-coumaric, or trans-ferulic acid or phenolics extracted from the cell walls of maize stem or barley straw. Mean apparent dry matter disappearance in control CBC cultures was 495 mg per g of hay, whereas the presence of phenolics reduced the initial dry matter disappearance by 6.3 to 25.6%. trans-p-Coumaric acid and, to a lesser extent, the phenolics from cell walls of maize stem were the most inhibitory compounds for dry matter disappearance and for the production of volatile fatty acids; trans-p-coumaric acid altered the molar ratio of acetate/propionate/butyrate. The CBC further showed variations in the ability of the rumen microbial population to adapt to phenolic compounds.  相似文献   

19.
20.
Summary The recent models of the Acetone-Butanol fermentation did not adequately describe the culture inhibition by the accumulating metabolites and were unable to simulate the acidogenic culture dynamics at elevated pH levels. The present updated modification of the model features a generalised inhibition term and a pH dependent terms for intracellular conversion of undissociated acids into solvent products. The culture dynamics predictions by the developed model compared well with experimental results from an unconventional acidogenic fermentation ofC. acetobutylicum.Nomenclature A acetone concentration in the fermentation broth, [g/L] - AA total concentration of dissociated and undissociated acetic acid, [g/L] - AA undiss concentration of undissociated acetic acid, [g/L] - APS Absolute Parameter Sensitivity - AT acetoin concentration in the fermentation broth, [g/L] - B butanol concentration in the fermentation broth, [g/L] - BA total concentration of dissociated and undissociated butyric acid, [g/L] - BA undiss concentration of undissociated butyric acid, [g/L] - E ethanol concentration in the fermentation broth, [g/L] - f(T) inhibition function as defined in Equation (2) - k 1 constant in Equation (4), [g substrate/g biomass] - k 2 constant in Equation (4), [g substrate/(g biomass.h)] - k 1 constant in Equation (5), [g substrate/(g biomass] - k 2 constant in Equation (5), [g substrate/(g biomass.h)] - k 3 constant in Equation (6), [g butyric acid/g substrate] - k 4 constant in Equation (6), [g butyric acid/(g biomass.h)] - k 5 constant in Equation (7), [g butanol/g substrate] - k 6 constant in Equation (8), [g acetic acid/g substrate] - k 7 constant in Equation (8), [g acetic acid/(g biomass.h)] - k 8 constant in Equation (9), [g acetone/g substrate] - k 9 constant in Equation (10), [g ethanol/g substrate] - k 10 constant in Equation (11), [g acetoin/g substrate] - k 11 constant in Equation (12), [g lactic acid/g substrate] - K I Inhibition constant, [g inhibitory products/L] - ke maintenance energy requirement for the cell, [g substrate/(g biomass.h)] - K AA acetic acid saturation constant, [g acetic acid/L] - K BA butyric acid saturation constant, [g butyric acid/L] - K S Monod's saturation constant, [g substrate/L] - LA lactic acid concentration in the fermentation broth, [g/L] - m i ,n i constants in Equation (14) - n empirical constant, dependent on degree of inhibition. - P concentration of inhibitory products (B+BA+AA), [g/L] - P max maximum value of product concentration to inhibit the fermentation, [g/L] - pKa equilibrium constant - r A rate of acetone production, [g acetone/L.h] - r AA rate of acetic acid production, [g acetic acid/L.h] - r AT rate of acetoin production, [g acetoin/L.h] - r B rate of butanol production, [g butanol/L.h] - r BA rate of butyric acid production, [g butyric acid/L.h] - r E rate of ethanol production, [g ethanol/L.h] - RPS Relative Parameter Sensitivity - r LA rate of lactic acid production, [g lactic acid/L.h] - r S dS/dt=total substrate consumption rate, [g substrate/L.h] - r S substrate utilization rate, [g substrate/L.h] - S substrate concentration in the fermentation broth, [g substrate/L] - S 0 initial substrate concentration, [substrate/L] - t time, [h] - X biomass concentration, [g/L] - Y X yield of biomass with respect to substrate, [g biomass/g substrate] - Y P i yield of metabolic product with respect to substrate, [g product/g substrate] Derivatives dX/dt rate of biomass production, [g biomass/L.h] - dP i /dt rate of product formation, [g product/L.h] Greek letters specific growth rate of the culture, [h–1] - I specific growth rate of the culture in the presence of the inhibitory products, [h–1] - µmax maximum specific growth rate of the culture, [h–1]  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号