共查询到20条相似文献,搜索用时 15 毫秒
1.
Meilin Zhang Xiuyan Feng Rongbin Guan Terence E. Hbert Deborah L. Segaloff 《Cellular signalling》2009,21(11):1663-1671
The D405N and Y546F mutations of the human lutropin receptor (hLHR) have previously been shown to partially attenuate hCG-stimulated cAMP synthesis despite normal cell surface expression and hCG binding affinity (Min, L. and Ascoli, M. Mol. Endocrinol. 14:1797–1810, 2000). We now show that these mutations each stabilize a resting state of the hLHR. A combined mutant D405N,Y546F is similarly expressed at the cell surface and exhibits normal ligand-binding, but is profoundly signaling impaired. Introduction of hLHR(wt) into cells stably expressing the signaling inactive D405N,Y546F resulted in the attenuation of hCG-stimulated cAMP production by hLHR(wt) even if excess Gs is co-expressed. Similarly, co-expression of D405N,Y546F with hLHR constitutively active mutants (CAMs) attenuated their constitutive activity. Quantitative bioluminescence resonance energy transfer (BRET) analyses demonstrated that D405N,Y546F formed heterodimers with both wt and CAM hLHR. In contrast hLHR(D405N,Y546F) did not heterodimerize with the melanocortin 3 receptor (MC3R) and agonist-stimulated cAMP production through the MC3R was not attenuated when these two receptors were co-expressed. Taken altogether, our data demonstrate that a signaling inactive hLHR mutant (that is trafficked normally to the plasma membrane) attenuates the signaling of the cell surface localized wt or the constitutively active hLHR due to receptor heterodimerization. Our studies, therefore, suggest a novel ramification of GPCR signaling resulting from receptor dimerization. 相似文献
2.
The MC3R and MC4R proteins comprise two melanocortin receptor subtypes that are involved in obesity, with each protein displaying a unique mechanism of action. To enable the design of a selective drug candidate, the solution structures of four peptidyl analogues of the melanocyte stimulating hormones, NDP-MSH, NDP-MSH(4-10) and two cyclic forms ([C5,C10]NDP-MSH(5-10), [C5,C10]NDP-MSH(5-11)), were characterized by two-dimensional nuclear magnetic resonance (NMR) spectroscopy and simulated annealing calculations. Using data from c-AMP assays in combination with structural analysis of melanocortin receptor/ligand models, we conclude that a lysine residue at the C-terminus of the His-Phe-Arg-Trp core sequence of melanocortin hormone is an important determinant for receptor selectivity in the both cyclic and linear MSH analogues. Our results suggest that side-chain orientation and charge-charge interactions with the ligand molecule play critical roles in receptor selectivity, whereas the overall backbone conformation or turn type contributes mainly to receptor binding. 相似文献
3.
In the present study we describe heterodimerization, trafficking, coupling to adenylyl cyclase and signaling in HEK-293 cells cotransfected with human-somatostatin receptor 5 (hSSTR5) and β1-adrenergic receptor (β1AR). hSSTR5/β1AR exists as heterodimers in basal conditions which was further enhanced upon synergistic activation of both receptors. Activation of either β1AR or hSSTR5 displayed dissociation of heterodimerization. In cotransfectants, β1AR effect on cAMP was predominant; however, blocking β1AR with antagonist resulted in 60% inhibition of forskolin-stimulated cAMP in the presence of hSSTR5 agonists. cAMP/PKA pathway in cotransfected cells was regulated in receptor-specific manner, in contrast, the status of pERK1/2 and pPI3K/AKT was predominantly regulated by hSSTR5. The expression levels of phosphorylated NFAT remained unchanged indicating blockade of calcineurin-mediated dephosphorylation and nuclear translocation of NFAT, the process predominantly regulated by pJNK in SSTR5 dependent manner. Taken together, the functional consequences of results described here might have relevance in the cardiovascular system where SSTR and AR subtypes play important roles. 相似文献
4.
Conde-Frieboes K Ankersen M Breinholt J Hansen BS Raun K Thøgersen H Wulff BS 《Bioorganic & medicinal chemistry letters》2011,21(5):1459-1463
A new class of melanocortin 4 receptor (MC4r) agonists was discovered from an unexpected sidereaction in which formaldehyde caused cyclization. These cyclophanes were found to be sub micromolar agonists of the MC1 and MC4 and were less potent on the MC3 and MC5 receptor. They were shown to compete with the peptidic antagonist SHU9119 for binding to the MC4 receptor. In an acute feeding study in Sprague Dawley rats, food intake was reduced more than 50% versus vehicle after 3 h at a dose of 1 mg/kg. 相似文献
5.
Cheung AW Qi L Gore V Chu XJ Bartkovitz D Kurylko G Swistok J Danho W Chen L Yagaloff K 《Bioorganic & medicinal chemistry letters》2005,15(24):5504-5508
Two libraries of hMC4R agonists, X-Y-DPhe7-Arg8-2-Nal9-Z-NH2 and X-Y-DPhe7-Arg8-Trp9-Z-NH2, totaling 185 peptides were prepared using Irori radiofrequency tagging technology and Argonaut Quest 210 Synthesizer, where X stands for N-caps, Y for His6 surrogates and Z for Gly10 surrogates. As a result of this study, His-modified pentapeptides with Trp were found to be more hMC4R potent than the corresponding 2-Nal analogs, novel N-caps and Gly surrogates were identified and 19 new peptides which are potent hMC4R agonists (EC50 1–15 nM) and selective against hMC1R were discovered. 相似文献
6.
Opioid receptors belong to the family of G-protein-coupled receptors characterized by their seven transmembrane domains. The activation of these receptors by agonists such as morphine and endogenous opioid peptides leads to the activation of inhibitory G-proteins followed by a decrease in the levels of intracellular cAMP. Opioid receptor activation is also associated with the opening of K(+) channels and the inhibition of Ca(2+) channels. A number of investigations, prior to the development of opioid receptor cDNAs, suggested that opioid receptor types interacted with each other. Early pharmacological studies provided evidence for the probable interaction between opioid receptors. More recent studies using receptor selective antagonists, antisense oligonucleotides, or animals lacking opioid receptors further suggested that interactions between opioid receptor types could modulate their activity. We examined opioid receptor interactions using biochemical, biophysical, and pharmacological techniques. We used differential epitope tagging and selective immunoisolation of receptor complexes to demonstrate homotypic and heterotypic interactions between opioid receptor types. We also used the proximity-based bioluminescence resonance energy transfer assay to explore opioid receptor-receptor interactions in living cells. In this article we describe the biochemical and biophysical methods involved in the detection of receptor dimers. We also address some of the concerns and suggest precautions to be taken in studies examining receptor-receptor interactions. 相似文献
7.
Emmanuelle Poque Hermanus J. Ruigrok Delia Arnaud-Cormos Denis Habauzit Yann Chappe Catherine Martin Florence Poulletier De Gannes Annabelle Hurtier Andr Garenne Isabelle Lagroye Yves Le Dran Philippe Lvêque Yann Percherancier 《Cell stress & chaperones》2021,26(1):241
As of today, only acute effects of RF fields have been confirmed to represent a potential health hazard and they are attributed to non-specific heating (≥ 1 °C) under high-level exposure. Yet, the possibility that environmental RF impact living matter in the absence of temperature elevation needs further investigation. Since HSF1 is both a thermosensor and the master regulator of heat-shock stress response in eukaryotes, it remains to assess HSF1 activation in live cells under exposure to low-level RF signals. We thus measured basal, temperature-induced, and chemically induced HSF1 trimerization, a mandatory step on the cascade of HSF1 activation, under RF exposure to continuous wave (CW), Global System for Mobile (GSM), and Wi-Fi-modulated 1800 MHz signals, using a bioluminescence resonance energy transfer technique (BRET) probe. Our results show that, as expected, HSF1 is heat-activated by acute exposure of transiently transfected HEK293T cells to a CW RF field at a specific absorption rate of 24 W/kg for 30 min. However, we found no evidence of HSF1 activation under the same RF exposure condition when the cell culture medium temperature was fixed. We also found no experimental evidence that, at a fixed temperature, chronic RF exposure for 24 h at a SAR of 1.5 and 6 W/kg altered the potency or the maximal capability of the proteasome inhibitor MG132 to activate HSF1, whatever signal used. We only found that RF exposure to CW signals (1.5 and 6 W/kg) and GSM signals (1.5 W/kg) for 24 h marginally decreased basal HSF1 activity.Electronic supplementary materialThe online version of this article (10.1007/s12192-020-01172-3) contains supplementary material, which is available to authorized users. 相似文献
8.
Alpha-melanotropin (alphaMSH), Ac-Ser1-Tyr2-Ser3-Met4-Glu5-His6-Phe7-Arg8-Trp9-Gly10-Lys11-Pro12-Val13-NH2,(1) has been long recognized as an important physiological regulator of skin and hair pigmentation in mammals. Binding of this peptide to the melanocortin receptor 1 (MC1R) leads to activation of tyrosinase, the key enzyme of the melanin biosynthesis pathway. In this study, interactions of the human MC1bR (an isoform of the receptor 1a) with the synthetic cyclic analogs of alphaMSH were studied. These ligands were analogs of MTII, Ac-Nle4-cyclo-(Asp5-His6-D-Phe7-Arg8-Trp9-Lys10)-NH2, a potent pan-agonist at the human melanocortin receptors (hMC1,3-5R). In the structure of MTII, the His6-D-Phe7-Arg8-Trp9 segment has been recognized as "essential" for molecular recognition at the human melanocortin receptors (hMC1,3-5R). Herein, the role of the Trp9 in the ligand interactions with the hMC1b,3-5R has been reevaluated. Analogs with various amino acids in place of Trp9 were synthesized and tested in vitro in receptor affinity binding and cAMP functional assays at human melanocortin receptors 1b, 3, 4 and 5 (hMC1b,3-5R). Several of the new peptides were high potency agonists (partial) at hMC1bR (EC50 from 0.5 to 20 nM) and largely inactive at hMC3-5R. The bulky aromatic side chain in position 9, such as that in Trp, was found not to be essential to agonism (partial) of the studied peptides at hMC1bR. 相似文献
9.
10.
Hirofumi Sato Yoji Nagashima George P. Chrousos Masamitsu Ichihashi Yoko Funasaka 《Pigment cell & melanoma research》2002,15(2):98-103
We previously demonstrated that advanced melanoma cells express high amounts of proopiomelanocortin (POMC) that correlate with tumor progression. We now investigated whether the high expression of POMC derives from increased expression of corticotropin‐releasing hormone (CRH) and the possible role of CRH as a melanoma growth factor. Forty‐five cases of melanoma [25 primary malignant melanoma; 20 metastatic melanoma (MetM)] were immunohistochemically analysed for coexpression of POMC and CRH peptides. The ability of CRH to induce POMC expression in cultured melanoma cells was examined using CRH and a CRH antagonist. In CRH positive melanomas, seven out of nine cases (78%) of primary melanoma, and 7 out of 12 cases (58%) of MetM showed colocalization of CRH and POMC peptides. CRH induced POMC mRNA expression, an effect that was inhibited by a CRH antagonist. These results provide evidence for the existence of the CRH/POMC axis in pigmented lesions. 相似文献
11.
This review article presents a collection of tool compounds that selectively block and are recommended for studying P2Y and P2X receptor subtypes, investigating their roles in physiology and validating them as future drug targets. Moreover, drug candidates and approved drugs for P2 receptors will be discussed. 相似文献
12.
Effects of Cannabinoids on Caffeine Contractures in Slow and Fast Skeletal Muscle Fibers of the Frog
Miguel Huerta Mónica Ortiz-Mesina Xóchitl Trujillo Enrique Sánchez-Pastor Clemente Vásquez Elena Castro Raymundo Velasco Rocío Montoya-Pérez Carlos Onetti 《The Journal of membrane biology》2009,229(2):91-99
The effect of cannabinoids on caffeine contractures was investigated in slow and fast skeletal muscle fibers using isometric
tension recording. In slow muscle fibers, WIN 55,212-2 (10 and 5 μM) caused a decrease in tension. These doses reduced maximum
tension to 67.43 ± 8.07% (P = 0.02, n = 5) and 79.4 ± 14.11% (P = 0.007, n = 5) compared to control, respectively. Tension-time integral was reduced to 58.37 ± 7.17% and 75.10 ± 3.60% (P = 0.002, n = 5), respectively. Using the CB1 cannabinoid receptor agonist ACPA (1 μM) reduced the maximum tension of caffeine contractures by 68.70 ± 11.63% (P = 0.01, n = 5); tension-time integral was reduced by 66.82 ± 6.89% (P = 0.02, n = 5) compared to controls. When the CB1 receptor antagonist AM281 was coapplied with ACPA, it reversed the effect of ACPA on caffeine-evoked tension. In slow and
fast muscle fibers incubated with the pertussis toxin, ACPA had no effect on tension evoked by caffeine. In fast muscle fibers,
ACPA (1 μM) also decreased tension; the maximum tension was reduced by 56.48 ± 3.4% (P = 0.001, n = 4), and tension-time integral was reduced by 57.81 ± 2.6% (P = 0.006, n = 4). This ACPA effect was not statistically significant with respect to the reduction in tension in slow muscle fibers.
Moreover, we detected the presence of mRNA for the cannabinoid CB1 receptor on fast and slow skeletal muscle fibers, which was significantly higher in fast compared to slow muscle fiber expression.
In conclusion, our results suggest that in the slow and fast muscle fibers of the frog cannabinoids diminish caffeine-evoked
tension through a receptor-mediated mechanism. 相似文献
13.
We have prepared and characterized a new fluorescent derivative of murine epidermal growth factor (EGF), Alexa Fluor 594-labeled EGF (A-EGF), for fluorescence studies of EGF-EGF receptor interactions. We describe the synthesis of this derivative and its physical and biological characterization. The significant overlap between the excitation and the emission spectra of A-EGF makes this probe well suited to fluorescence resonance energy homo-transfer. Using time-resolved fluorescence to examine the oligomeric state of the EGF receptor, we have observed resonance energy homo-transfer of A-EGF bound to EGF receptors in cells, but not of A-EGF bound to EGF receptors in membrane vesicles. Our results, interpreted in the context of recent crystallographic studies of the ligand-binding domains of EGF receptors, suggest that observed fluorescence resonance energy transfer does not result from transfer within receptor dimers, but rather results from transfer within higher-order oligomers. Furthermore, our results support a structural model for oligomerization of EGF receptors in which dimers are positioned head-to-head with respect to the ligand-binding site, consistent with the head-to-head interactions observed between adjacent receptor dimers by X-ray crystallography. 相似文献
14.
Nishimaki-Mogami T Kawahara Y Tamehiro N Yoshida T Inoue K Ohno Y Nagao T Une M 《Biochemical and biophysical research communications》2006,339(1):386-391
The farnesoid X receptor (FXR) is a bile acid/alcohol-activated nuclear receptor that regulates lipid homeostasis. Unlike other steroid receptors, FXR binds bile acids in an orientation that allows the steroid nucleus A ring to face helix 12 in the receptor, a crucial domain for coactivator-recruitment. Because most naturally occurring bile acids and alcohols contain a cis-oriented A ring, which is distinct from that of other steroids and cholesterol metabolites, we investigated the role of this 5beta-configuration in FXR activation. The results showed that the 5beta-(A/B cis) bile alcohols 5beta-cyprinol and bufol are potent FXR agonists, whereas their 5alpha-(A/B trans) counterparts antagonize FXR transactivation and target gene expression. Both isomers bound to FXR, but their ability to induce coactivator-recruitment and thereby induce transactivation differed. These findings suggest a critical role for the A-ring orientation of bile salts in agonist/antagonist function. 相似文献
15.
cAMP-dependent protein kinase (PKA) plays a key role in intracellular signalling. cAMP antagonists, acting as suppressors of PKA activity by preventing PKA-holoenzyme dissociation, have received increasing attention because of their potential use in diagnostics as well as for therapeutic purposes. A large number of cAMP analogs have been described over the last three decades and methodology has been established to monitor cAMP agonists action by either following enzymatic activity or holoenzyme dissociation. This is not the case for cAMP antagonists, where only a few substances have been demonstrated to exhibit effects in the low micromolar range, for example, Rp-8-Br-cAMPS. A main drawback in the development of new compounds is the lack of technologies to assess antagonist action in an in vitro situation as well as in living cells. Here we quantify the effect of several cAMP analogs applying three different biochemical/biophysical assay setups and one in-cell assay. This includes two methods monitoring subunit dissociation in a test tube, namely AlphaScreen, a bead-based proximity assay, and surface plasmon resonance, determining the association and dissociation patterns of the two PKA subunits in real time in response to antagonists. BRET(2), performed in living cells in a 96-well format, allows testing for the efficacy of membrane-permeable cAMP analogs based on a genetically engineered cAMP sensor. Using novel and established experimental strategies side by side, the action of cAMP and cAMP analogs was tested on type Ialpha PKA holoenzyme, thus generating methodology to screen drug libraries for potential cAMP antagonists with high accuracy, reproducibility as well as potential for automation. 相似文献
16.
R. Woodward C. Coley S. Daniell L. H. Naylor P. G. Strange 《Journal of neurochemistry》1996,66(1):394-402
Abstract: Three serine residues (Ser193 , Ser194 , Ser197 ) in the fifth transmembrane-spanning region of the D2 dopamine receptor have been mutated separately to alanine and the effects of the mutations determined in ligand-binding experiments with [3 H]spiperone. For many antagonists the mutations had little effect, showing that the overall conformation of the mutant receptors was similar to that of the native, although there were effects on the binding of certain antagonists. The effect of the mutations on agonist binding to the free receptor (uncoupled from G proteins) was determined in the presence of GTP (100 µ M ). This showed that there was no single mode of binding of catecholamine agonists to the receptor and that all three serine residues can participate in the binding of some agonists, possibly through hydrogen bonds to the catechol hydroxyl groups. Coupling of the mutant receptors to G proteins was assessed from agonist-binding curves in the absence of GTP, when higher and lower affinity agonist-binding sites were seen. Receptor/G protein coupling was generally unaffected by the Ala193 and Ala194 mutations, but the Ala197 mutation eliminated receptor/G protein coupling for some agonists. These data show that the interactions of agonists with the free and coupled forms of the receptor are different. 相似文献
17.
Fichna J do-Rego JC Kosson P Schiller PW Costentin J Janecka A 《Biochemical and biophysical research communications》2006,345(1):162-168
The ability of several mu-selective opioid peptides to activate G-proteins was measured in rat thalamus membrane preparations. The mu-selective ligands used in this study were three structurally related peptides, endomorphin-1, endomorphin-2 and morphiceptin, and their analogs modified in position 3 or 4 by introducing 3-(1-naphthyl)-d-alanine (d-1-Nal) or 3-(2-naphthyl)-d-alanine (d-2-Nal). The results obtained for these peptides in [(35)S]GTPgammaS binding assay were compared with those obtained for a standard mu-opioid agonist DAMGO. [d-1-Nal(3)]Morphiceptin was more potent in G-protein activation (EC(50) value of 82.5+/-4.5 nM) than DAMGO (EC(50)=105+/-9 nM). [d-2-Nal(3)]Morphiceptin, as well as endomorphin-2 analogs substituted in position 4 by either d-1-Nal or d-2-Nal failed to stimulate [(35)S]GTPgammaS binding and were shown to be potent antagonists against DAMGO. It seems that the topographical location of the aromatic ring of position 3 and 4 amino acid residues can result in a completely different mode of action, producing either agonists or antagonists. 相似文献
18.
Yukiko Nakamura Makoto Kondo Yoshihisa Koyama Shoichi Shimada 《Biochemical and biophysical research communications》2019,508(2):590-596
The serotonin (5-hydroxytryptamine) type 3 (5-HT3) receptors are transmembrane ligand-gated ion channels. Although several 5-HT3 receptor agonists have been used as preclinical tools, SR 57227A is the most commonly used 5-HT3 receptor agonist with the ability to cross the blood brain barrier. However, the precise pharmacological profile of SR 57227A remains unclear. Therefore, we examined the pharmacological profile of SR 57227A at the 5-HT3A and 5-HT3AB receptors. We microinjected Xenopus laevis oocytes with human 5-HT3A complementary RNA (cRNA) or a combination of human 5-HT3A and human 5-HT3AB cRNA and performed two electrode voltage clamp recordings of 5-HT3A and 5-HT3AB receptor current in the presence of SR 57227A. Results showed that SR 57227A acts as partial agonist/partial antagonist at the 5-HT3 receptor. Interestingly, SR 57227A specifically reduced subsequent current amplitudes induced by 5-HT or SR 57227A. Based on its 5-HT3 receptor partial agonist/partial antagonist properties, we predict that SR 57227A functions as a serotonin stabilizer. 相似文献
19.
Lysine-288 in the glucagon-like peptide-1 receptor was predicted to be ideally positioned to play a role in hormone binding. Subsequent mutation of Lys-288 to Ala or Leu greatly reduced hormone affinity, while substitution with Arg had minimal effect. Compared to wild type, the Lys288-Ala receptor had a reduced affinity for three peptide ligands with complete N-terminal sequences but not for their N-truncated analogues. Hence, the role of this positively charged residue, which is conserved at the equivalent position in all other Family B receptors, was determined to be important for receptor interaction with the N-terminal eight residues of peptide agonists. 相似文献
20.