首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Accumulating evidence suggests that changes in both 5-hydroxytryptamine (5-HT) receptor activity and in the levels of reactive oxygen species (ROS) play an important role in regulating pulmonary artery (PA) vascular responsiveness, particularly in the setting of pulmonary hypertension. Therefore, we hypothesized that increased levels of superoxide enhance 5-HT-induced PA constriction. With the use of a small-vessel bioassay, 5-HT (0.01-10 microM) induced a concentration-dependent vasoconstriction in isolated wild-type murine intrapulmonary arteries (100-150 microm diameter) that was enhanced by both removal of the endothelium and by treatment with either N(G)-nitro-L-arginine methyl ester (30 microM) or xanthine (10 microM) + xanthine oxidase (0.005 U/ml). PA isolated from extracellular superoxide dismutase (EC-SOD) knockout mice also showed enhanced constriction. On the other hand, PA constriction to 5-HT was attenuated by either the addition of GR-127935 (0.1 microM, a selective inhibitor of 5-HT(1B/1D) receptor) or copper/zinc-containing superoxide dismutase (Cu/Zn SOD, 150 U/ml) and in PA isolated from transgenic mice overexpressing human EC-SOD. With the use of both oxidative fluorescent confocal microscopy and lucigenin-enhanced chemiluminescence, superoxide levels were increased significantly after 5-HT-induced PA vasoconstriction. This increase in superoxide levels could be blocked by the exogenous addition of Cu/Zn SOD (150 U/ml) or by apocynin (30 microM, an inhibitor of NADPH oxidase) but was not affected by gp91(phox) knockout mice. Overall, our results are consistent with 5-HT increasing vascular smooth muscle superoxide production via an NADPH oxidase pathway that is independent of gp91(phox), which leads to increases in extracellular superoxide levels, which in turn enhances 5-HT-induced murine pulmonary vasoconstriction.  相似文献   

2.
We constructed a genetic map of most of the length of bovine chromosome 1 using the CSIRO and the Texas A&M University cattle reference families. Twelve loci are in a single linkage group, 9 of which are highly polymorphic loci. Four loci are of known biochemical function, α-1 crystallin (CRYA1), γ-s crystallin (CRYGS), superoxide dismutase 1 (SOD1), and uridine monophosphate synthase (LIMPS), and these have also been previously mapped in humans. The loci CRYA 1, CSRD 1613, GMBT 7, RM 95, SOD I, and LIMPS had been previously assigned to bovine syntenic group U10, while CSRD 1613 and LIMPS had also been assigned to chromosome 1 by in situ hybridization. All of the loci show statistically significant linkage to at least one other locus. The conserved loci indicate that there have been major rearrangements during the evolution of bovine chromosome 1 compared to other mammalian chromosomes. The estimate of the total length of the linkage group is 168 cM, which accords well with the predicted length based on chiasmata frequencies for the bovine genome and the relative size of chromosome 1 in the bovine genome.  相似文献   

3.
Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall. EC-SOD is also observed in monocytes/macrophages, and its high expression contributes to the suppression of atherosclerosis by scavenging superoxide. The molecular mechanisms governing cell-specific expression of EC-SOD are mostly unknown, while the anti-oxidative effect of EC-SOD is well recognized. In this study, we investigated the expression of EC-SOD during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced monocytic differentiation of THP-1 cells, which is not expressing its gene in the basal phase. We confirmed the significant induction of EC-SOD in a TPA time-dependent manner, and that induction was completely blocked by pre-treatment with GF109203X, an inhibitor of protein kinase C, U0126 and PD98059, inhibitors of mitogen-activated protein kinase kinase/extracellular-signal regulated kinase. Moreover, we determined the involvement of NADPH oxidase-derived reactive oxygen species in that induction. Overall, we considered that these results may contribute to clarify the cell-specific expression of EC-SOD.  相似文献   

4.
5.
《Free radical research》2013,47(5):637-644
Abstract

Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall. EC-SOD is also observed in monocytes/macrophages, and its high expression contributes to the suppression of atherosclerosis by scavenging superoxide. The molecular mechanisms governing cell-specific expression of EC-SOD are mostly unknown, while the anti-oxidative effect of EC-SOD is well recognized. In this study, we investigated the expression of EC-SOD during 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced monocytic differentiation of THP-1 cells, which is not expressing its gene in the basal phase. We confirmed the significant induction of EC-SOD in a TPA time-dependent manner, and that induction was completely blocked by pre-treatment with GF109203X, an inhibitor of protein kinase C, U0126 and PD98059, inhibitors of mitogen-activated protein kinase kinase/extracellular-signal regulated kinase. Moreover, we determined the involvement of NADPH oxidase-derived reactive oxygen species in that induction. Overall, we considered that these results may contribute to clarify the cell-specific expression of EC-SOD.  相似文献   

6.
超氧化物歧化酶(SOD,EC 1.15.1.1),己经在多种组织中发现,它能将O2.-催化生成H2O2及O2.迄今为止,已经从哺乳动物体内分离出三种SOD:CuZnSOD(SOD1)、MnSOD(SOD2)TLEC-SOD(胞外超氧化物歧化酶,SOD3),各自具有不同的生化及分子特性.CuZnSOD(SOD1),是一类含有Cu及Zn原子的二聚体,存在于特定细胞的基质内,约占SOD总量的90%.在胞质及周质中,SOD以二聚体形式存在,而在线粒体及质外,则以四聚体形式存在.在保护脑、肺及其它组织的氧化应激中,CuZnSOD被认为起着保护作用.运动神经元肌萎缩侧索硬化症(ALS),据称也与同源二聚体CuZnSOD的错误折叠有关,己经报导,有多个CuZnSOD基因位点突变与ALS有关.本文将从基因的结构、表达、调节及蛋白的结构与功能等方面,对CuZnSOD进行简要论述.  相似文献   

7.
Oxygen free radicals apparently play important roles in diseases of the blood vessel wall and increased secretion of superoxide radicals occurs in many situations. The vascular wall contains large amounts of extracellular superoxide dismutase (EC-SOD). The synthesis of the enzyme by the smooth muscle cells (SMC) is modulated by cytokines, growth factors, and vasoactive factors.Here we studied the effects of oxidants (pyrogallol, xanthine oxidase, Cu and Fe), antioxidants (SOD, catalase, and ascorbate), glutathione modulation (n-acetylcysteine and buthionine sulfoximine) and nitric oxide on EC-SOD expression by human vascular SMCs. Generally, the responses in EC-SOD synthesis were small, and no changes were noted in mRNA levels. High concentrations of some of the agents caused reductions in EC-SOD synthesis, mostly concomitantly with toxic effects on the cells. Cell cultures are normally ascorbate deficient, and addition of ascorbate to approach physiological levels doubled the EC-SOD content. Iron ions up-regulated EC-SOD synthesis but also blocked the secretion of the enzyme. Only down-regulation was found by NO*-releasing compounds.In conclusion, there is limited response to oxidant stress of EC-SOD synthesis by SMCs on a cell-autonomous level. The synthesis appears mainly regulated by factors coordinating concerted tissue responses.  相似文献   

8.
《Free radical research》2013,47(2):87-99
Heparin (2,000 U/kg, i.v.) increases the plasma superoxide dismutase (SOD) activity by 2-3 times after 5min. followed by a gradual decrease. A high dose of heparin (4 × 103 and 10 × 103U/kg) exhibits a lower increase in the release of SOD. Ischaemic paw oedema in mice was suppressed by various types of SOD and heparin also suppresses this oedema. The dose-dependent curve of heparin of oedema suppression corresponds well with the increased plasma level of SOD. Inducibility with heparin, slow clearance from the bloodstream and blocking of oedema suppression by the copper chelator, diethyldithiocarbamate (DDC), suggest that the oedema suppressing SOD was the extracellular (EC)-SOD C. Other anticoagulants such as citrate and EDTA had no effect. Chondroitin sulphate A and C or carrageenan exhibited weak suppression. A complex of EC-SOD C and heparin appears not to bind to the endothelium in contrast to the injected free EC-SOD C. When heparin is re-injected, more than 1 week was required to get the same degree of oedema suppression. This indicates the necessity of newly synthesized enzyme. A biological role for heparin-induced release of plasma SOD is demonstrated for the first time in this investigation.  相似文献   

9.
The influence of cytokines on extracellular superoxide dismutase (EC-SOD) expression by human dermal fibroblasts was investigated. The expression was markedly stimulated by interferon-gamma (IFN-gamma), was varying between fibroblast lines stimulated or depressed by interleukin-1 alpha (IL-1 alpha), was intermediately depressed by tumor necrosis factor-alpha (TNF-alpha), and markedly depressed by transforming growth factor-beta (TGF-beta). TNF-alpha, however, enhanced the stimulation by a high dose of IFN-gamma, whereas TGF-beta markedly depressed the stimulations given by IFN-gamma and IL-1 alpha. The ratio between the maximal stimulation and depression observed was around 30-fold. The responses were generally slow and developed over periods of several days. There were no effects of IFN-alpha, IL-2, IL-3, IL-4, IL-6, IL-8, granulocyte-macrophage colony-stimulating factor, human growth hormone, Escherichia coli lipopolysaccharide, leukotriene B4, prostaglandin E2, formylmethionylleucylphenylalanine, platelet-activating factor, and indomethacin. The cytokines influencing the EC-SOD expression are also known to influence superoxide production by leukocytes and other cell types, and the EC-SOD response pattern is roughly compatible with the notion that its function is to protect cells against extracellular superoxide radicals. The results show that EC-SOD is a participant in the complex inflammatory response orchestrated by cytokines. The CuZn-SOD activity of the fibroblasts was not influenced by any of the cytokines, whereas the Mn-SOD activity was depressed by TGF-beta. TNF-alpha, IL-1 alpha, and IFN-gamma stimulated the Mn-SOD activity, as previously known, and these responses were reduced by TGF-beta. The different responses of the three SOD isoenzymes illustrate their different physiological roles.  相似文献   

10.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-alpha and interleukin-1beta contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

11.
Extracellular superoxide dismutase (EC-SOD), the major SOD isoenzyme in biological fluids, is known to be N-glycosylated and heterogeneous as was detected in most glycoproteins. However, only one N-glycan structure has been reported in recombinant human EC-SOD produced in Chinese hamster ovary (CHO) cells. Thus, a precise N-glycan profile of the recombinant EC-SOD is not available. In this study, we report profiling of the N-glycan in the recombinant mouse EC-SOD produced in CHO cells using high-resolution techniques, including the liberation of N-glycans by treatment with PNGase F, fluorescence labeling by pyridylamination, characterization by anion-exchange, normal and reversed phase-HPLC separation, and mass spectrometry. We succeeded in identifying 26 different types of N-glycans in the recombinant enzyme. The EC-SOD N-glycans were basically core-fucosylated (98.3% of the total N-glycan content), and were high mannose sugar chain, and mono-, bi-, tri-, and tetra-antennary complex sugar chains exhibiting varying degrees of sialylation. Four of the identified N-glycans were uniquely modified with a sulfate group, a Lewis(x) structure, or an α-Gal epitope. The findings will shed new light on the structure-function relationships of EC-SOD N-glycans.  相似文献   

12.
Heparin (2,000 U/kg, i.v.) increases the plasma superoxide dismutase (SOD) activity by 2-3 times after 5min. followed by a gradual decrease. A high dose of heparin (4 × 103 and 10 × 103U/kg) exhibits a lower increase in the release of SOD. Ischaemic paw oedema in mice was suppressed by various types of SOD and heparin also suppresses this oedema. The dose-dependent curve of heparin of oedema suppression corresponds well with the increased plasma level of SOD. Inducibility with heparin, slow clearance from the bloodstream and blocking of oedema suppression by the copper chelator, diethyldithiocarbamate (DDC), suggest that the oedema suppressing SOD was the extracellular (EC)-SOD C. Other anticoagulants such as citrate and EDTA had no effect. Chondroitin sulphate A and C or carrageenan exhibited weak suppression. A complex of EC-SOD C and heparin appears not to bind to the endothelium in contrast to the injected free EC-SOD C. When heparin is re-injected, more than 1 week was required to get the same degree of oedema suppression. This indicates the necessity of newly synthesized enzyme. A biological role for heparin-induced release of plasma SOD is demonstrated for the first time in this investigation.  相似文献   

13.
Under some pathological conditions in brain, a large amount of superoxide anion (O2 ?) is produced, causing various cellular damages. Among three isozymes of superoxide dismutase (SOD), extracellular (EC)-SOD should play a role to detoxify O2 ? in extracellular space; however, a little is known about EC-SOD in brain. Although dopamine (DA) stored in the synaptic vesicle is stable, the excess leaked DA is spontaneously oxidized to yield O2 ? and reactive DA quinones, causing damages of dopaminergic neurons. In the present study, we examined the effects of DA on SOD expression in cultured rat cortical astrocytes. By means of RT-PCR, all mRNA of three isozymes of SOD could be detected; however, only EC-SOD was increased by DA exposure for 24 h, dose-dependently. The expression of EC-SOD protein and the cell-surface SOD activity in astrocytes also increased with 100 μM DA exposure. The increase of EC-SOD mRNA by DA was inhibited by a DA transporter inhibitor, GBR12909, whereas it was not changed by DA receptor antagonists, SKF-83566 (D1) and haloperidol (D2). Furthermore, a monoamine oxidase inhibitor, pargyline, and antioxidants, N-acetyl-l-cysteine and glutathione, also did not affect the DA-induced expression of EC-SOD mRNA. On the other hand, an inhibitor of nuclear factor kappaB (NF-κB), ammonium pyrrolidine-1-carbodithioate, suppressed the DA-induced expression of EC-SOD mRNA. These results suggest that DA incorporated into the cells caused the induction of EC-SOD mRNA followed by the enhancements of EC-SOD protein level and the enzyme activity, and that NF-κB activation is involved in the mechanisms of the EC-SOD induction. The regulation of EC-SOD in astrocytes surrounding dopaminergic neurons may contribute to the defensive mechanism against oxidative stress in brain.  相似文献   

14.
The effect of oxidative stress on the cellular uptake and nuclear translocation of extracellular superoxide dismutase (EC-SOD) was investigated. EC-SOD was incorporated from conditioned medium of stable EC-SOD expressing CHO-EK cells into 3T3-L1 cells within 15 min. The uptake was clearly inhibited by the addition of heparin at a concentration of 0.4 microg/ml. Treatment of the 3T3-L1 cells with H(2)O(2) (5 mM for 5 min), followed by incubation with CHO-EK medium downregulated the uptake of EC-SOD. Nuclear translocation of the incorporated EC-SOD was clearly enhanced by H(2)O(2) treatment following incubation with the CHO-EK medium. EC-SOD is the only anti-oxidant enzyme which is known at this time to be actively transported into nuclei. The results obtained here suggest that the upregulation of the nuclear translocation of EC-SOD by oxidative stress might play a role in the mechanism by which the nucleus is protected against oxidative damage of genomic DNA.  相似文献   

15.
Extracellular-superoxide dismutase (EC-SOD) is a major SOD isozyme mainly present in the vascular wall and plays an important role in normal redox homeostasis. We previously showed the significant reduction or induction of EC-SOD during human monocytic U937 or THP-1 cell differentiation induced by 12-O-tetradecanoylphorbol-13-acetate (TPA), respectively; however, its cell-specific expression and regulation have not been fully elucidated. It has been reported that epigenetic factors, such as DNA methylation and histone modification, are involved in several kinds of gene regulation. In this study, we investigated the involvement of epigenetic factors in EC-SOD expression and determined high levels of DNA methylation within promoter and coding regions of EC-SOD in THP-1 cells compared to those in U937 cells. Moreover, treatment with a DNA methyltransferase inhibitor, 5-azacytidine, significantly induced the expression of EC-SOD in THP-1 cells, indicating the importance of DNA methylation in the suppression of EC-SOD expression; however, the DNA methylation status did not change during THP-1 cell differentiation induced by TPA. On the other hand, we detected histone H3 and H4 acetylation during differentiation. Further, pretreatment with histone acetyltransferase inhibitors, CPTH2 or garcinol, significantly suppressed the TPA-inducible EC-SOD expression. We also determined the epigenetic suppression of EC-SOD in peripheral blood mononuclear cells. Treatment with granulocyte macrophage colony-stimulating factor (GM-CSF)/granulocyte-CSF induced that expression. Overall, these findings provide novel evidence that cell-specific and TPA-inducible EC-SOD expression are regulated by DNA methylation and histone H3 and H4 acetylation in human monocytic cells.  相似文献   

16.
We have examined the protein content and gene expression of three superoxide dismutase (SOD) isoenzymes in eight tissues from obese ob/ob mice, particularly placing the focus on extracellular-SOD (EC-SOD) in the white adipose tissue (WAT). Obesity significantly increased EC-SOD level in liver, kidney, testis, gastrocnemius muscle, WAT, brown adipose tissue (BAT), and plasma, but significantly decreased the isoenzyme level in lung. Tumor necrosis factor-α and interleukin-1β contents in WAT were significantly higher in obese mice than in lean control mice. Immunohistochemically, both WAT and BAT from obese mice could be stained deeply with anti-mouse EC-SOD antibody compared with those from lean mice. Each primary culture per se almost time-dependently enhanced EC-SOD production, and overtly expressed its mRNA. The loss of heparin-binding affinity of EC-SOD type C with high affinity for heparin occurred in kidney of obese mice. These results suggest that the physiological importance of this SOD isoenzyme in WAT may be a compensatory adaptation to oxidative stress.  相似文献   

17.
Recently, homology has been reported for pS2, a protein expressed in many human breast cancers, and a hormonogastric protein known as pancreatic spasmolytic polypeptide (SPP; formerly designated as PSP). The breast cancer estrogen inducible locus (BCEI), which encodes pS2, maps to human chromosome 21 (HSA 21). The SPP locus has not been mapped in humans. Several loci from HSA 21 have been mapped in cattle to syntenic group U10, but a BCEI bovine homolog was not detected. If a bovine BCEI locus does exist, map comparisons predict BCEI will reside on syntenic group U10. The assignment of bovine SPP to syntenic group U10 supports the postulated evolutionary relationship between BCEI and SPP.  相似文献   

18.
Extracellular superoxide dismutase   总被引:1,自引:0,他引:1  
The extracellular space is protected from oxidant stress by the antioxidant enzyme extracellular superoxide dismutase (EC-SOD), which is highly expressed in selected tissues including blood vessels, heart, lungs, kidney and placenta. EC-SOD contains a unique heparin-binding domain at its carboxy-terminus that establishes localization to the extracellular matrix where the enzyme scavenges superoxide anion. The EC-SOD heparin-binding domain can be removed by proteolytic cleavage, releasing active enzyme into the extracellular fluid. In addition to protecting against extracellular oxidative damage, EC-SOD, by scavenging superoxide, preserves nitric oxide bioactivity and facilitates hypoxia-induced gene expression. Loss of EC-SOD activity contributes to the pathogenesis of a number of diseases involving tissues with high levels of constitutive extracellular superoxide dismutase expression. A thorough understanding of the biological role of EC-SOD will be invaluable for developing novel therapies to prevent stress by extracellular oxidants.  相似文献   

19.
A bovine yeast artificial chromosome (YAC) clone containing the superoxide dismutase 1 ( SOD1 ) gene was used as a template for polymerase chain reaction (PCR) amplification using a conserved short interspersed nuclear element (SINE) primer. Two highly polymorphic microsatellites with nine and eight alleles were isolated and mapped by linkage analysis to the centromeric region of BTA1. These microsatellites will be used in the construction of a genetic and physical map of the SOD1 region towards positional cloning of the polled gene.  相似文献   

20.
Superoxide anions react with nitric oxide to form peroxynitrite and hence reduce the bioavailability of nitric oxide in the arteries. Extracellular superoxide dismutase (EC-SOD) is a major superoxide scavenger in human plasma and vascular tissues. The objective of this study is to assess whether essential hypertension is associated with an alteration in EC-SOD activity. In this report, blood samples were obtained from hypertensive (n=39) and normotensive (n=37) African-Americans. Plasma EC-SOD activity was measured using in-gel activity staining and spectrophotometric assays, EC-SOD protein level was measured using Western blotting, nitrotyrosine was measured using slot blotting, 8-isoprostane was measured with an enzyme immunoassay, and plasma copper and zinc concentrations were measured using an atomic absorption assay. Our data demonstrate that the copper, zinc, and plasma EC-SOD protein concentrations in the hypertensive and normotensive subjects are indistinguishable. Compared to normotensive controls, hypertensive patients have significantly reduced plasma EC-SOD activity. Plasma nitrotyrosine and 8-isoprostane levels are significantly higher in the hypertensive patients than in normotensive controls. Results from this study suggest that a reduction in EC-SOD activity in hypertensive patients is not due to a down-regulation of the SOD3 gene (encoding EC-SOD) or deficiency in mineral cofactors. Furthermore, the reduced EC-SOD activity might be at least partially responsible for the increased oxidative stress, as reflected by increased plasma nitrotyrosine and 8-isoprostane, in hypertensive subjects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号