首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Acoustic signals often have a significant role in pair formation and in species recognition. Determining the genetic basis of signal divergence will help to understand signal evolution by sexual selection and its role in the speciation process. An earlier study investigated quantitative trait locus for male courtship song carrier frequency (FRE) in Drosophila montana using microsatellite markers. We refined this study by adding to the linkage map markers for 10 candidate genes known to affect song production in Drosophila melanogaster. We also extended the analyses to additional song characters (pulse train length (PTL), pulse number (PN), interpulse interval, pulse length (PL) and cycle number (CN)). Our results indicate that loci in two different regions of the genome control distinct features of the courtship song. Pulse train traits (PTL and PN) mapped to the X chromosome, showing significant linkage with the period gene. In contrast, characters related to song pulse properties (PL, CN and carrier FRE) mapped to the region of chromosome 2 near the candidate gene fruitless, identifying these genes as suitable loci for further investigations. In previous studies, the pulse train traits have been found to vary substantially between Drosophila species, and so are potential species recognition signals, while the pulse traits may be more important in intra-specific mate choice.  相似文献   

2.
Li Y  Hoxha V  Lama C  Dinh BH  Vo CN  Dauwalder B 《PloS one》2011,6(11):e28269
Male courtship behavior in Drosophila melanogaster is controlled by two main regulators, fruitless (fru) and doublesex (dsx). Their sex-specific expression in brain neurons has been characterized in detail, but little is known about the downstream targets of the sex-specific FRU and DSX proteins and how they specify the function of these neurons. While sexual dimorphism in the number and connections of fru and dsx expressing neurons has been observed, a majority of the neurons that express the two regulators are present in both sexes. This poses the question which molecules define the sex-specific function of these neurons. Signaling molecules are likely to play a significant role. We have identified a predicted G-protein coupled receptor (GPCR), CG4395, that is required for male courtship behavior. The courtship defect in the mutants can be rescued by expression of the wildtype protein in fru neurons of adult males. The GPCR is expressed in a subset of fru-positive antennal glomeruli that have previously been shown to be essential for male courtship. Expression of 4395-RNAi in GH146 projection neurons lowers courtship. This suggests that signaling through the CG4395 GPCR in this subset of fru neurons is critical for male courtship behavior.  相似文献   

3.
4.
Drosophila melanogaster females were subjected to pulse song before being allowed to mix with males. Sine song increases female receptivity, pulse song does not. Pulse song does however increase receptivity if the females are subjected to it while being courted by males which are deaf and which cannot produce any auditory stimulation themselves. It is suggested that sine song is summated and has a priming effect on female receptivity whereas pulse song functions as a species recognition signal in a trigger-like fashion.  相似文献   

5.
Wagner WE  Reiser MG 《Animal behaviour》2000,59(6):1219-1226
Male field crickets produce calling songs, courtship songs, tactile signals and chemical signals. Although calling songs are known to play an important role in female mate choice, the importance of the other signals in mate choice is poorly understood. In the variable field cricket, Gryllus lineaticeps, females select mates, in part, based on variation in male calling song. Females prefer higher chirp rates, a trait which is partially dependent on male nutrient intake, and females prefer longer chirp durations, a trait which appears to be independent of male nutrient intake. We tested whether females also have preferences based on variation in male courtship song, and whether the structure of male courtship song varies with nutrient intake. First, we reexamined female preference for calling song chirp rate. Then, we examined: (1) female preference based on courtship song chirp rate; (2) the relative importance of calling song and courtship song chirp rate; (3) the nutrition dependence of courtship song chirp rate; and (4) the correlation between calling song and courtship song chirp rate. As reported previously, females preferred higher calling song chirp rates, and in addition, preferred higher courtship song chirp rates. Females were more likely to switch from a speaker broadcasting more attractive calling song to a speaker broadcasting less attractive calling song when the attractive calling song was associated with an unattractive courtship song than when it was associated with an attractive courtship song. Preferences based on courtship song may thus cause females to alter the choices that they made based on calling song. Males that received greater nutrients did not produce higher courtship song chirp rates. There was no correlation between calling song and courtship song chirp rate. As a result, the two traits may provide information to females about different aspects of male quality. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

6.
7.
The males of six species of the Drosophila virilis group (including D. virilis) keep their wings extended while producing a train of sound pulses, where the pulses follow each other without any pause. The males of the remaining five species of the group produce only one sound pulse during each wing extension/vibration, which results in species-specific songs with long pauses (in D. littoralis about 300 ms) between successive sound pulses. Genetic analyses of the differences between the songs of D. virilis and D. littoralis showed that species-specific song traits are affected by genes on the X chromosome, and for the length of pause, also by genes on chromosomes 3 and 4. The X chromosomal genes having a major impact on pulse and pause length were tightly linked with white, apricot and notched marker genes located at the proximal third of the chromosome. A large inversion in D. littoralis, marked by notched, prevents more precise localization of these genes by classical crossing methods.  相似文献   

8.
9.
1. Variation in larval food composition can have far‐reaching effects on the adult phenotype of insects. To maximise reproductive output, it is therefore beneficial if insects are able to plastically adapt to nutritional cues in their larval diet. 2. The expression of sexual traits implicated in pre‐ and postcopulatory sexual selection of the lesser wax moth, Achroia grisella Fabricius, across different rearing environments of varying diet composition was investigated. 3. Moths reared on diet with relatively low amounts of carbohydrate, but more protein and fats, had lower survival rates, decreased body mass, and longer development times. Males reared on this diet produced songs with higher pulse pair rates (which are attractive to females) and transferred more sperm per copulation than males reared on the alternative diets. 4. There was no evidence for a trade‐off between pre‐ and postcopulatory traits. Interestingly, individuals with both higher pulse pair rates and more transferred sperm came from the treatment group with higher mortality rates and generally poorer development. The present results suggest that both of these sexual characteristics are developmentally plastic, but that only moths reared on the protein‐rich diet were able to benefit from this plasticity.  相似文献   

10.
11.
12.
13.
The formation of different structures in Drosophila depends on the combined activities of selector genes and signaling pathways. For instance, the antenna requires the selector gene homothorax, which distinguishes between the leg and the antenna and can specify distal antenna if expressed ectopically. Similarly, the eye is formed by a group of "eye-specifying" genes, among them eyeless, which can direct eye development ectopically. We report here the characterization of the hernandez and fernandez genes, expressed in the antennal and eye primordia of the eye-antenna imaginal disc. The predicted proteins encoded by these two genes have 27% common amino acids and include a Pipsqueak domain. Reduced expression of either hernandez or fernandez mildly affects antenna and eye development, while the inactivation of both genes partially transforms distal antenna into leg. Ectopic expression of either of the two genes results in two different phenotypes: it can form distal antenna, activating genes like homothorax, spineless, and spalt, and it can promote eye development and activates eyeless. Reciprocally, eyeless can induce hernandez and fernandez expression, and homothorax and spineless can activate both hernandez and fernandez when ectopically expressed. The formation of eye by these genes seems to require Notch signaling, since the induction of ectopic eyes and the activation of eyeless by the hernandez gene are suppressed when the Notch function is compromised. Our results show that the hernandez and fernandez genes are required for antennal and eye development and are also able to specify eye or antenna ectopically.  相似文献   

14.
Interest in Drosophila courtship behavior has a long-standing tradition, starting with the works by Sturtevant in 1915, and by Bastock and Manning in the 50s. The neural and genetic base of Drosophila melanogaster courtship behavior has made big strides in recent years, but the studies on males far outnumber those on females. Recent technical developments have made it possible to begin to unravel the biological substrates underlying the complexity of Drosophila female sexual behavior and its decisive effect on mating success. The present review focus more on the female side and summarizes the sensory signals that the male sends, using multiple channels, and which neural circuits and genes are mediating sex-specific behavioral responses.  相似文献   

15.
Female mate preferences are a major cause of diversity and elaboration in male sexual traits. Here we characterize the shape of female preference functions for pulse length and carrier frequency of the courtship song of Drosophila montana by fitting both parametric and nonparametric functions to the incidence of female receptive gestures to synthetic song. Preference functions for both traits are strongly directional. That for pulse length is linear and favors short pulses, whereas that for carrier frequency is stabilizing in shape, but would exert directional preferences favoring males with high carrier frequency. The preference for carrier frequency has probably evolved under sexual selection, but reasons for the preference for short pulses are less apparent. We also examine the effect of ambient temperature on the carrier frequency of male song and on the preference function for carrier frequency. For many similar acoustic communication systems, temperature coupling, a compensatory effect of temperature on preference functions, is thought to maintain coordination between preferences and signals. However, although the carrier frequency of D. montana song is highly dependent on environmental temperature, there is no temperature coupling of the female preference function. We suggest that temperature coupling may often arise due to a common effect of temperature on song and preference, rather than be an advantageous characteristic whose function is to maintain coordination in temperature-affected communication systems.  相似文献   

16.
Boettiger CA  Doupe AJ 《Neuron》2001,31(5):809-818
We provide evidence here of long-term synaptic plasticity in a songbird forebrain area required for song learning, the lateral magnocellular nucleus of the anterior neostriatum (LMAN). Pairing postsynaptic bursts in LMAN principal neurons with stimulation of recurrent collateral synapses had two effects: spike timing- and NMDA receptor-dependent LTP of the recurrent synapses, and LTD of thalamic afferent synapses that were stimulated out of phase with the postsynaptic bursting. Both types of plasticity were restricted to the sensory critical period for song learning, consistent with a role for each in sensory learning. The properties of the observed plasticity are appropriate to establish recurrent circuitry within LMAN that reflects the spatiotemporal pattern of thalamic afferent activity evoked by tutor song. Such circuit organization could represent a tutor song memory suitable for reinforcing particular vocal sequences during sensorimotor learning.  相似文献   

17.
18.
19.
There is now considerable evidence that female choice drives the evolution of song complexity in many songbird species. However, the underlying basis for such choice remains controversial. The developmental stress hypothesis suggests that early developmental conditions can mediate adult song complexity by perturbing investment in the underlying brain nuclei during their initial growth. Here, we show that adult male canaries (Serinus canaria), infected with malaria (Plasmodium relictum) as juveniles, develop simpler songs as adults compared to uninfected individuals, and exhibit reduced development of the high vocal centre (HVC) song nucleus in the brain. Our results show how developmental stress not only affects the expression of a sexually selected male trait, but also the structure of the underlying song control pathway in the brain, providing a direct link between brain and behaviour. This novel experimental evidence tests both proximate and ultimate reasons for the evolution of complex songs and supports the Hamilton-Zuk hypothesis of parasite-mediated sexual selection. Together, these results propose how developmental costs may help to explain the evolution of honest advertising in the complex songs of birds.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号