首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cellulose microfibril angle in the cell wall of wood fibres   总被引:1,自引:0,他引:1  
The term microfibril angle (MFA) in wood science refers to the angle between the direction of the helical windings of cellulose microfibrils in the secondary cell wall of fibres and tracheids and the long axis of cell. Technologically, it is usually applied to the orientation of cellulose microfibrils in the S2 layer that makes up the greatest proportion of the wall thickness, since it is this which most affects the physical properties of wood. This review describes the organisation of the cellulose component of the secondary wall of fibres and tracheids and the various methods that have been used for the measurement of MFA. It considers the variation of MFA within the tree and the biological reason for the large differences found between juvenile (or core) wood and mature (or outer) wood. The ability of the tree to vary MFA in response to environmental stress, particularly in reaction wood, is also described. Differences in MFA have a profound effect on the properties of wood, in particular its stiffness. The large MFA in juvenile wood confers low stiffness and gives the sapling the flexibility it needs to survive high winds without breaking. It also means, however, that timber containing a high proportion of juvenile wood is unsuitable for use as high-grade structural timber. This fact has taken on increasing importance in view of the trend in forestry towards short rotation cropping of fast grown species. These trees at harvest may contain 50% or more of timber with low stiffness and therefore, low economic value. Although they are presently grown mainly for pulp, pressure for increased timber production means that ways will be sought to improve the quality of their timber by reducing juvenile wood MFA. The mechanism by which the orientation of microfibril deposition is controlled is still a matter of debate. However, the application of molecular techniques is likely to enable modification of this process. The extent to which these techniques should be used to improve timber quality by reducing MFA in juvenile wood is, however, uncertain, since care must be taken to avoid compromising the safety of the tree.  相似文献   

2.
Eucalyptus nitens plantations are generally established for pulpwood production but an increasing area is being managed for solid wood. Genetic variation in, and correlations among, three Kraft pulpwood traits (diameter at breast height, basic density and near-infrared-predicted cellulose content) and three 12-mm wood-core shrinkage traits (recoverable collapse, net shrinkage and gross shrinkage) were examined, utilising data from two 9-year-old first-generation progeny trials in Tasmania. These trials contained approximately 400 open-pollinated families (over 100 of which were sampled for wood properties) representing three central-Victorian E. nitens races. Significant genetic variation at the race and/or within-race level was identified in all traits. Within races, relative levels of additive genetic variation were higher for shrinkage traits, although narrow-sense heritabilities were lower and the expression of genetic variation less stable across sites than for other wood property traits. Heterogeneous intertrait genetic correlations were identified across sites between growth and some wood property traits. However, where significant, genetic correlations indicated that within-race selection for growth would adversely affect core basic density and all core shrinkage traits. Furthermore, results based on cores suggested that within-race selection for higher basic density would favourably impact on cellulose content and collapse but selection for either higher basic density or cellulose content would adversely affect net shrinkage. Most within-race genetic variation in gross shrinkage appeared to be due to genetic variation in collapse. The implications of these results for sawn timber breeding will depend on the strength of genetic correlations between core traits and rotation-age objective traits and objective trait economic weights.  相似文献   

3.
Active mechanisms of re-orientation are necessary to maintain the verticality of tree stems. They are achieved through the production of reaction wood, associated with circumferential variations of three factors related to cambial activity: maturation strain, longitudinal modulus of elasticity (MOE) and eccentric growth. These factors were measured on 17 mature trees from different botanical families and geographical locations. Various patterns of circumferential variation of these factors were identified. A biomechanical analysis based on beam theory was performed to quantify the individual impact of each factor. The main factor of re-orientation is the circumferential variation of maturation strains. However, this factor alone explains only 57% of the re-orientations. Other factors also have an effect through their interaction with maturation strains. Eccentric growth is generally associated with heterogeneity of maturation strains, and has an important complementary role, by increasing the width of wood with high maturation strain. Without this factor, the efficiency of re-orientations would be reduced by 31% for angiosperms and 26% for gymnosperms. In the case of angiosperms, MOE is often larger in tension wood than in normal wood. Without these variations, the efficiency of re-orientations would be reduced by 13%. In the case of gymnosperm trees, MOE of compression wood is lower than that of normal wood, so that re-orientation efficiency would be increased by 24% without this factor of variations.  相似文献   

4.
In response to gravitational stresses, angiosperm trees form tension wood in the upper sides of branches and leaning stems in which cellulose content is higher, microfibrils are typically aligned closely with the fibre axis and the fibres often have a thick inner gelatinous cell wall layer (G-layer). Gene expression was studied in Eucalyptus nitens branches oriented at 45 degrees using microarrays containing 4900 xylem cDNAs, and wood fibre characteristics revealed by X-ray diffraction, chemical and histochemical methods. Xylem fibres in tension wood (upper branch) had a low microfibril angle, contained few fibres with G-layers and had higher cellulose and decreased Klason lignin compared with lower branch wood. Expression of two closely related fasciclin-like arabinogalactan proteins and a beta-tubulin was inversely correlated with microfibril angle in upper and lower xylem from branches. Structural and chemical modifications throughout the secondary cell walls of fibres sufficient to resist tension forces in branches can occur in the absence of G-layer enriched fibres and some important genes involved in responses to gravitational stress in eucalypt xylem are identified.  相似文献   

5.
Genetic variation and co-variation among the key pulpwood selection traits for Eucalyptus globulus were estimated for a range of sites in Portugal, with the aim of improving genetic parameters used to predict breeding values and correlated response to selection. The trials comprised clonally replicated full-sib families (eight trials) and unrelated clones (17 trials), and exhibited varying levels of pedigree connectivity. The traits studied were stem diameter at breast height, Pilodyn penetration (an indirect measure of wood basic density) and near infrared reflectance predicted pulp yield. Univariate and multivariate linear mixed models were fitted within and across sites, and estimates of additive genetic, total genetic, environmental and phenotypic variances and covariances were obtained. All traits studied exhibited significant levels of additive genetic variation. The average estimated within-site narrow-sense heritability was 0.19 ± 0.03 for diameter and 0.29 ± 0.03 for Pilodyn penetration, and the pooled estimate for predicted pulp yield was 0.42 ± 0.14. When they could be tested, dominance and epistatic effects were generally not statistically significant, although broad-sense heritability estimates were slightly higher than narrow-sense heritability estimates. Averaged across trials, positive additive (0.64 ± 0.08), total genetic (0.58 ± 0.04), environmental (0.38 ± 0.03) and phenotypic (0.43 ± 0.02) correlation estimates were consistently obtained between diameter and Pilodyn penetration. This data argues for at least some form of pleiotropic relationship between these two traits and that selection for fast growth will adversely affect wood density in this population. Estimates of the across-site genetic correlations for diameter and Pilodyn penetration were high, indicating that the genotype by environment interaction is low across the range of sites tested. This result supports the use of single aggregated selection criteria for growth and wood density across planting environments in Portugal, as opposed to having to select for performance in different environments.  相似文献   

6.
The level of polymorphism using genomic and cDNA probes with a number of restriction enzymes and the inheritance of the RFLP loci was investigated in E. nitens. The polymorphism detected with 366 genomic and cDNA probes and three to six restriction enzymes was analysed in three-generation outbred pedigrees. No difference in the level of polymorphism detected with genomic versus cDNA probes was observed. There was a difference in the efficiency of detection of polymorphism with six different restriction enzymes, with three of the enzymes (BglII, DraI and EcoRI) showing substantially more polymorphism than the others. There was no significant correlation between the size of the DNA fragments generated by the enzymes and the detection of polymorphism. Several cases of restriction-site mutations resulting in a polymorphism were observed. The inheritance of 69 loci was analysed in two pedigrees resulting from interpopulational crosses. The majority of the loci segregated according to expected ratios with distortion observed in only 3% of loci. Probes from the cDNA library detected a greater proportion of loci with more than two alleles than did probes from the genomic library. The high polymorphism, large number of alleles, and ease of interpretation of RFLPs in E. nitens means that they will be useful in a range of applications such as genetic linkage maps and paternity analysis.  相似文献   

7.
Douglas-fir trees from 39 open-pollinated families at four test locations were assessed to estimate heritability of modulus of elasticity (MOE) and basic density. After trees were felled, sound velocity was measured on 4-m logs with the Director HM200. Disks were taken to estimate dry and green wood density; dynamic MOE was estimated as green density × (sound velocity)2. Heritability estimates of MOE (across-site h 2=0.55) were larger than those for total height (0.15) and diameter at breast height (DBH; 0.29), and similar to those for density (0.59). Negative genetic correlations were found for MOE with height (r A=−0.30) and DBH (r A=−0.51), and were similar to those found for density with height (r A=−0.52) and DBH (r A=−0.57). The partial correlations of height with MOE and density, while holding DBH constant, were positive, implying that the observed negative correlations between height and the wood properties were a function of the high positive correlation between height and DBH and the strong negative correlations between DBH and the wood properties. Taper [DBH/(height−1.4)] was found to be negatively associated with MOE. Selection for MOE may produce greater gains than selection for density because MOE had a larger coefficient of additive variation (9.6%) than density (5.1%). Conversely, selection for growth may have a more negative impact on MOE than density because of the greater genetic variation associated with MOE. Family mean correlations of the wood quality traits with stem form and crown health were mostly nonsignificant.  相似文献   

8.
Spontaneous bleeding of sugar-rich sap from cambial-deep incisions in the bark of trunks was demonstrated for Eucalyptus globulus and other eucalypts across a range of localities and seasonal conditions in south-west Australia. High levels of sucrose and raffinose (up to 31% w/v total sugars) were present in the exudates, and upward and downward gradients in exudate sugar concentrations were recorded between samples obtained at different heights up trunks of E. globulus. The data indicated a phloem origin for the exudates, with source:sink pressure gradients driving translocation. Concentration ratios of sugars to amino acids were consistently lower in exudate from upper (distal) than basal regions of trunks, suggesting preferential partitioning of nitrogen upwards towards the trunk apex. A comparison of phloem and xylem sap composition from one plantation over a season showed nitrate in xylem but not phloem and substantial amounts of sodium, and high concentrations of chloride and sulphate relative to phosphate in xylem and phloem. Phloem sap sampled across a range of 29 contrasting plantations of E. globulus at peak stress (autumn) showed great inter-site variability in concentrations of amino acids, sulphur, sodium and certain trace elements and in C:N and Na:K ratios of sap. Carbon isotope ratios (δ13C) were strongly correlated with sugar concentrations of the sap samples from these and other plantations. Use of sap compositional attributes of phloem and δ13C values of translocated carbon is suggested for assessing the current nutritional condition and water status of E. globulus plantings. Received: 9 April 1998 / Accepted: 20 August 1998  相似文献   

9.
Cambial growth and wood properties respond to fluctuating environmental conditions. Understanding the nature of these responses is crucial to understanding their cumulative effect on the wood quality characteristics of a forest stand. This paper reports on a study conducted over a period of 3? years in continuously irrigated, alternately irrigated and non-irrigated Eucalyptus globulus, in which changes in wood density occurring in response to short-term growth responses were examined. The study showed that continuous irrigation led to the production of wood with significantly more homogenous density than was the case in situations, where trees experienced large fluctuations in temporal water availability. Although the trees which were not irrigated had the highest wood density overall, trees in which growth was relatively continuous tended to produce the largest volumes of wood with relatively high density, compared to trees in which periodic growth responses were caused by intermittent irrigation, in which wood density was actually reduced. This was largely due to more growth days in summer under the conditions of higher radiation, and a reduction in the number of growth events leading to the production of disproportionately large amounts of low density wood. Soil water deficits contributed to density variation in all treatments, but the effect of energy limitations became more important in continuously irrigated trees.  相似文献   

10.
R.K. Misra 《Plant and Soil》1999,206(1):37-46
Information on the growth response of a crop plant in relation to temperature can be helpful in selecting genotypes to suit local environments, scheduling favourable time of planting and forecasting growth and yield. To determine the effects of varying temperature on root and shoot elongation of eucalypt seedlings, elongation rates of roots and shoots were measured in rhizotrons for two species (Eucalyptus nitens (Deane and Maiden) Maiden, and Eucalyptus globulus Labill.) at a temperature range of 5–23 °C. Within this range of temperatures, elongation rates of roots and shoots of both species increased with an increase in temperature. Roots of E. globulus were more sensitive and shoots less sensitive to temperature than those of E. nitens. However, the threshold temperature corresponding with zero elongation rate predicted from the regression of elongation rate against temperature was similar for the roots (∼5 °C) and shoots (∼0 °C) of both species. Hysteresis did not appear to have a significant influence on root or shoot elongation of both species during warming compared with cooling. Results are discussed highlighting the importance of the interaction between development and growth of plant components.  相似文献   

11.
In order to measure the flow-dynamical effect of arteriosclerotic changes of the vessel wall we determined volume elasticity E' and modulus of elasticity of 53 human aortae in a static p-V-test as other authors did, too. The p-V-curves are normalized to the aortic basic volume Vo, so that we could determine the haemodynamic effect of arteriosclerosis immediately from E' and. Diameter, length, and, accordingly, the basic volume of the aorta without prestressing increase significantly in aortae with severe arteriosclerosis in comparison to those without sclerosis. The volume elasticity E' as a function of the static aortic pressure has a minimum within physiological pressure range and changes into a linear function when arteriosclerosis increases. The modulus of elasticity of a normal aorta remains constant within a pressure range of 20 to 100 mm Hg and it shows a linear increase at higher pressure. The differences between Vo, E' and of aortae with and without severe arteriosclerosis, however, are highly significant.  相似文献   

12.
 Development of the relationship between leaf area (A l ) and sapwood area (A s ) was investigated in two important hardwoods, Eucalyptus globulus (Labill) and E. nitens (Deane and Maiden) Maiden, growing in an experimental plantation established in a low rainfall zone (approx. 515 mm year–1) of Tasmania. The experiment compared irrigated controls and a rainfed treatment which was subjected to cyclical summer droughts from age 1 to 6 years old. Leaf area and sapwood area were determined by destructive sampling at ages 2, 3 and 6 years old. There was no effect of stand age on A l :A s when sapwood area was measured at crown break. At age 3 years old A l :A s was significantly greater in the rainfed than the irrigated trees. It was concluded that this difference was due to earlier canopy closure in the irrigated trees. When the plantation was 6 years old A l :A s was significantly greater in the irrigated than the rainfed treatment. An analysis based on an equation which links A l :A s with transpiration and volumetric flow rate (Whitehead et al. 1984) was used to infer a positive correlation between stem hydraulic conductivity (k h ) and water availability. Independent of water availability E. globulus maintained a higher A l :A s than E. nitens at all ages. Received: 20 March 1997 / Accepted: 30 December 1997  相似文献   

13.
Although it has been recognized as a key parameter of wood quality and a good source of information on growth, annual wood density has been little studied within diffuse-porous trees such as beech ( Fagus sylvatica Liebl.). In this paper we examine the variability encountered in beech ring density series and analyze the influences of ring age, ring width, climate and between-tree variability on density. Thirty ring sequences were sampled from 55-year- old dominant beech trees growing within the same stand; ring density and width were measured using radiography. Ring density proved to be less variable through time than ring width. The relationship between these two variables was less than observed in ring-porous trees and it showed great variation between trees. The sensitivity of ring width and density to climate was also different; width was strongly linked to soil water deficit whereas density was correlated to temperature and August rainfall. Unlike ring width, wood density showed sensitivity towards climatic characteristics of the late growing season. A large part of annual density variability remains unexplained, even using advanced modelled water balance variables. We hypothesize that a significant part of the tree ring is under internal control. We also demonstrated great inter-tree variability (the tree effect) in ring density, which has an influence on density but not on trees response to climate.  相似文献   

14.
Imposition of waterlogging for eight months induced morphological adaptation in Eucalyptus nitens in the form of adventitious and aerenchymatous roots and hypertrophy of stems. Foliar calcium (1.3-fold), potassium (2-fold) and phosphorus (2.4-fold) were lower and iron (5.6-fold) was higher in waterlogged than control saplings. Stem Ca (1.7-fold) was lower, whereas Mn (1.8-fold) and Fe (117-fold) were higher in waterlogged than control saplings. Distinct purple pigmentation was observed in xylem tissues of waterlogged saplings. A significant reduction in the maximum photosynthetic rate and photochemical efficiency was observed in waterlogged compared to control saplings. Although chlorophyll levels were similar, the xanthophyll cycle pool size was significantly greater in waterlogged saplings and may have contributed to the relatively greater capacity for light energy dissipation observed. Predawn xanthophyll cycle engagement was significantly greater in waterlogged than control saplings, despite relatively mild temperatures. Foliar anthocyanin concentration was higher in waterlogged than control saplings.  相似文献   

15.
We studied egg production and the occurrence of adaptive superparasitism in Anaphes nitens, an egg parasitoid of the Eucalyptus snout beetle Gonipterus scutellatus. First, we determined whether A. nitens females were synovigenic or pro‐ovigenic. Newly emerged females were allowed to lay eggs alone during 3 days on six fresh egg capsules. A first group of females (n = 25) were killed by freezing and the remaining females (n = 21) were maintained during two extra days with food, but without hosts. Their fecundity was measured by dissection of host eggs and females’ ovarioles. We found that the second group of females increased their fecundity by about 20%, suggesting they were weakly synovigenic. To test for the occurrence of adaptive superparasitism in relation to competitors’ density, we compared the oviposition behaviour of females kept alone, in pairs, or in groups of four during patch visit. Results indicated that the females superparasited significantly more often in this last treatment. Synovigeny and the ability to modulate the use of superparasitism could be mentioned as important attributes that allow A. nitens to efficiently control the pest population.  相似文献   

16.
17.
Relationships between the elemental composition, the microfibril angle (MFA) distribution and the average shape of the cell cross-section of irrigated-fertilised and untreated Norway spruce (Picea abies [L.] Karst.) earlywood were studied. Sample material was obtained from Flakaliden, Sweden. The elemental composition was studied by determining the relative mass fractions of the elements P, S, Cl, K, Ca and Mn by X-ray fluorescence and by determining the mass absorption coefficients for X-rays. X-ray diffraction was used to determine the MFA distribution and the average shape of the cell cross-section. The latter was also determined by light microscopy. In transition from juvenile wood to mature wood, a decrease of the mode of the MFA distribution from 13°–24° to 3°–6° was connected to a change in the shape of the cell cross-section from circular to rectangular. The irrigation-fertilisation treatment caused no change in the MFA distribution or in the shape of the cell cross-section, whereas the mass absorption coefficient was higher and the density was smaller in irrigated-fertilised wood. Larger proportion of the elements S, Cl and K, but smaller proportion of the element Mn, were observed due to the treatment. The results indicate that the shape of the cell cross-section or the MFA distribution are not directly linked to the growth rate of tracheids or to the nutrient-element content in the xylem and only show notable changes as a function of the cambial age.  相似文献   

18.
19.
Several models of the effects of silviculture, radial growth, and tree age on wood density have been developed, but they have rarely considered the roles of diverse seed origins and climate. We developed a model to test the effects of radial growth, tree age, climate, and seed-source origins on wood density in 21 diverse populations of jack pine in a common garden in Petawawa, Ontario, Canada over the last 24 years using a linear mixed-effects model. Although we found significant differences in wood density among diverse seed origins, there were no differences between seed origins having the same ring age and ring width, indicating an indirect effect on wood density of seed-source origin via radial growth. High variation in wood density among trees within the same population and between populations indicated high genetic control of wood density. The climate effect was significant on wood density in all populations, but smaller when radial growth was controlled. Climate effect did not differ significantly among populations. Precipitation in July negatively affected latewood density, whereas precipitation in May in the current year and September of the previous year negatively affected earlywood density. We concluded that a single model of jack pine wood density and radial growth could be used, either controlling for climate effects or not, as the relationship between wood density and radial growth is preserved among the diverse populations, and the climate effect controlling for radial growth in the model was only slight.  相似文献   

20.
The rate of leaf CO2 assimilation (A l) and leaf area determine the rate of canopy CO2 assimilation (A c) can be thought proportional to assimilate supply for growth and structural requirements of plants. Partitioning of biomass within plants and anatomy of cells within stems can determine how assimilate supply affects both stem growth and wood density. We examined the response of stem growth and wood density to reduced assimilate supply by pruning leaf area. Removing 42% of the leaf area of Eucalyptus grandis Hill ex Maiden seedlings did not stimulate leaf-level photosynthesis (A l) or stomatal conductance, contrary to some previous studies. Canopy-level photosynthesis (A c) was reduced by 41% immediately after pruning but due almost solely to continued production of leaves, and was only 21% lower 3 weeks later. Pruning consequently reduced seedling biomass by 24% and stem biomass by 18%. These reductions in biomass were correlated with reduced A c. Pruning had no effect on stem height or diameter and reduced wood density to 338 kg m−3 compared to 366 kg m−3 in control seedlings. The lower wood density in pruned seedlings was associated with a 10% reduction in the thickness of fibre cell walls, and as fibre cell diameter was invariant to pruning, this resulted in smaller lumen diameters. These anatomical changes increased the ratio of cross-sectional area of lumen to area cell wall material within the wood. The results suggest changes to wood density following pruning of young eucalypt trees may be independent of tree volume and of longer duration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号