首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
end4–1 was isolated as a temperature-sensitive endocytosis mutant. We cloned and sequenced END4 and found that it is identical to SLA2/MOP2. This gene is required for growth at high temperature, viability in the absence of Abp1p, polarization of the cortical actin cytoskeleton, and endocytosis. We used a mutational analysis of END4 to correlate in vivo functions with regions of End4p and we found that two regions of End4p participate in endocytosis but that the talin-like domain of End4p is dispensable. The N-terminal domain of End4p is required for growth at high temperature, endocytosis, and actin organization. A central coiled-coil domain of End4p is necessary for formation of a soluble sedimentable complex. Furthermore, this domain has an endocytic function that is redundant with the function(s) of ABP1 and SRV2. The endocytic function of Abp1p depends on its SH3 domain. In addition we have isolated a recessive negative allele of SRV2 that is defective for endocytosis. Combined biochemical, functional, and genetic analysis lead us to propose that End4p may mediate endocytosis through interaction with other actin-associated proteins, perhaps Rvs167p, a protein essential for endocytosis.  相似文献   

2.
V Duli?  H Riezman 《The EMBO journal》1989,8(5):1349-1359
The Saccharomyces cerevisiae END1 gene is required for formation or maintenance of the vacuole, for growth on non-fermentable carbon sources, for efficient mating and for growth at 37 degrees C. The END1 gene was cloned by complementation of the end1 mutation. Two end1 null mutants, constructed by disruption and deletion of the END1 gene, show features identical to the original end1 mutant. However, in this paper we correct a previous finding from our group that end1 is defective in internalization of the yeast pheromone alpha-factor. End1 mutants take up alpha-factor at the same rate as corresponding wild-type cells but the internalized pheromone is not degraded. Since whole cell respiration and respiratory control of end1 mitochondria are not impaired, it seems plausible that a defect in gluconeogenesis could partially account for the inability of end1 to grow on non-fermentable carbon sources. DNA sequence analysis of the END1 gene reveals a 3090-bp open reading frame capable of encoding a hydrophilic protein of 118 kd. The molecular mass of End1p was confirmed by immunoprecipitation. The predicted End1p sequence shows no significant similarity to other known protein sequences except for a short region of homology with the putative adenine nucleotide binding sites shared by a group of enzymes, notably ATPases.  相似文献   

3.
Several proteins from diverse organisms have been shown to share a region of sequence homology with the mammalian epidermal growth factor receptor tyrosine kinase substrate Eps15. Included in this new protein family, termed EH domain proteins, are two yeast proteins, Pan1p and End3p. We have shown previously that Pan1p is required for normal organization of the actin cytoskeleton and that it associates with the actin patches on the cell cortex. End3p has been shown by others to be an important factor in the process of endocytosis. End3p is also known to be required for the organization of the actin cytoskeleton. Here we report that Pan1p and End3p act as a complex in vivo. Using the pan1-4 mutant which we isolated and characterized previously, the END3 gene was identified as a suppressor of pan1-4 when overexpressed. Suppression of the pan1-4 mutation by multicopy END3 required the presence of the mutant Pan1p protein. Coimmunoprecipitation and two-hybrid protein interaction experiments indicated that Pan1p and End3p associate with each other. The localization of Pan1p to the cortical actin cytoskeleton became weakened in the end3 mutant at the permissive temperature and undetectable at the restrictive temperature, suggesting that End3p may be important for proper localization of Pan1p to the cortical actin cytoskeleton. The finding that the pan1-4 mutant was defective in endocytosis as severely as the end3 mutant under nonpermissive conditions supports the notion that the association between Pan1p and End3p is of physiological relevance. Together with results of earlier reports, these results provide strong evidence suggesting that Pan1p and End3p are the components of a complex that has essential functions in both the organization of cell membrane-associated actin cytoskeleton and the process of endocytosis.  相似文献   

4.
Four mutants defective in endocytosis were isolated by screening a collection of temperature-sensitive yeast mutants. Three mutations define new END genes: end5-1, end6-1, and end7-1. The fourth mutation is in END4, a gene identified previously. The end5-1, end6-1, and end7-1 mutations do not affect vacuolar protein localization, indicating that the defect in each mutant is specific for internalization at the plasma membrane. Interestingly, localization of actin patches on the plasma membrane is affected in each of the mutants. end5-1, end6-1, and end7-1 are allelic to VRP1, RVS161, and ACT1, respectively. VRP1 and RVS161 are required for correct actin localization and ACT1 encodes actin. To our surprise, the end6-1 mutation fails to complement the act1-1 mutation. Disruption of the RVS167 gene, which is homologous to END6/RVS161 and which is also required for correct actin localization, also blocks endocytosis. The end7-1 mutant allele has a glycine 48 to aspartic acid substitution in the DNase I-binding loop of actin. We propose that Vrp1p, Rvs161p, and Rvs167p are components of a cytoskeletal structure that contains actin and fimbrin and that is required for formation of endocytic vesicles at the plasma membrane.  相似文献   

5.
Ubiquitination of integral plasma membrane proteins triggers their rapid internalization into the endocytic pathway. The yeast ubiquitin ligase Rsp5p, a homologue of mammalian Nedd4 and Itch, is required for the ubiquitination and subsequent internalization of multiple plasma membrane proteins, including the alpha-factor receptor (Ste2p). Here we demonstrate that Rsp5p plays multiple roles at the internalization step of endocytosis. Temperature-sensitive rsp5 mutant cells were defective in the internalization of alpha-factor by a Ste2p-ubiquitin chimera, a receptor that does not require post-translational ubiquitination. Similarly, a modified version of Ste2p bearing a NPFXD linear peptide sequence as its only internalization signal was not internalized in rsp5 cells. Internalization of these variant receptors was dependent on the catalytic cysteine residue of Rsp5p and on ubiquitin-conjugating enzymes that bind Rsp5p. Thus, a Rsp5p-dependent ubiquitination event is required for internalization mediated by ubiquitin-dependent and -independent endocytosis signals. Constitutive Ste2p-ubiquitin internalization and fluid-phase endocytosis also required active ubiquitination machinery, including Rsp5p. These observations indicate that Rsp5p-dependent ubiquitination of a trans-acting protein component of the endocytosis machinery is required for the internalization step of endocytosis.  相似文献   

6.
E-cadherin is a member of the cadherin family of Ca2+-dependent cell-cell adhesion molecules. E-cadherin associates with beta-catenin at the membrane-distal region of its cytosolic domain and with p120 at the membrane-proximal region of its cytoplasmic domain. It has been shown that a pool of cell surface E-cadherin is constitutively internalized and recycled back to the surface. Further, p120 knockdown by small interference RNA resulted in dose-dependent elimination of cell surface E-cadherin. Consistent with these observations, we found that selective uncoupling of p120 from E-cadherin by introduction of amino acid substitutions in the p120-binding site increased the level of E-cadherin endocytosis. The increased endocytosis was clathrin-dependent, because it was blocked by expression of a dominant-negative form of dynamin or by hypertonic shock. A dileucine motif in the juxtamembrane cytoplasmic domain is required for E-cadherin endocytosis, because substitution of these residues to alanine resulted in impaired internalization of the protein. The alanine substitutions in the p120-uncoupled construct reduced endocytosis of the protein, indicating that this motif was dominant to p120 binding in the control of E-cadherin endocytosis. Therefore, these results are consistent with the idea that p120 regulates E-cadherin endocytosis by masking the dileucine motif and preventing interactions with adaptor proteins required for internalization.  相似文献   

7.
Clathrin-mediated endocytosis involves a coordinated series of molecular events regulated by interactions among a variety of proteins and lipids through specific domains. One such domain is the Eps15 homology (EH) domain, a highly conserved protein-protein interaction domain present in a number of proteins distributed from yeast to mammals. Several lines of evidence suggest that the yeast EH domain-containing proteins Pan1p, End3p, and Ede1p play important roles during endocytosis. Although genetic and cell-biological studies of these proteins suggested a role for the EH domains in clathrin-mediated endocytosis, it was unclear how they regulate clathrin coat assembly. To explore the role of the EH domain in yeast endocytosis, we mutated those of Pan1p, End3p, or Ede1p, respectively, and examined the effects of single, double, or triple mutation on clathrin coat assembly. We found that mutations of the EH domain caused a defect of cargo internalization and a delay of clathrin coat assembly but had no effect on assembly of the actin patch. We also demonstrated functional redundancy among the EH domains of Pan1p, End3p, and Ede1p for endocytosis. Of interest, the dynamics of several endocytic proteins were differentially affected by various EH domain mutations, suggesting functional diversity of each EH domain.  相似文献   

8.
Phosphoinositide second messengers, generated from the action of phosphoinositide 3-kinase (PI3K), mediate an array of signaling pathways through the membrane recruitment and activation of downstream effector proteins. Although pleckstrin domains of many target proteins have been shown to bind phosphatidylinositol 3,4,5-trisphosphate (PIP(3)) and/or phosphatidylinositol 3,4-bisphosphate (PI(3,4)P(2)) with high affinity, published data concerning the phosphoinositide binding specificity of Src homology 2 (SH2) domains remain conflicting. Using three independent assays, we demonstrated that the C-terminal (CT-)SH2 domain, but not the N-terminal SH2 domain, on the PI3K p85alpha subunit displayed discriminative affinity for PIP(3). However, the binding affinity diminished precipitously when the acyl chain of PIP(3) was shortened. In addition, evidence suggests that the charge density on the phosphoinositol ring represents a key factor in determining the phosphoinositide binding specificity of the CT-SH2 domain. In light of the largely shared structural features between PIP(3) and PI(4,5)P(2), we hypothesized that the PIP(3)-binding site on the CT-SH2 domain encompassed a sequence that recognized PI(4,5)P(2). Based on a consensus PI(4,5)P(2)-binding sequence (KXXXXXKXKK; K denotes Arg, Lys, and His), we proposed the sequence (18)RNKAENLLRGKR(29) as the PIP(3)-binding site. This binding motif was verified by using a synthetic peptide and site-directed mutagenesis. More importantly, neutral substitution of flanking Arg(18) and Arg(29) resulted in a switch of ligand specificity of the CT-SH2 domain to PI(4,5)P(2) and PI(3,4)P(2), respectively. Together with computer modeling, these mutagenesis data suggest a pseudosymmetrical relationship in the recognition of the phosphoinositol head group at the binding motif.  相似文献   

9.
Morishita M  Engebrecht J 《Genetics》2005,170(4):1561-1574
During sporulation in Saccharomyces cerevisiae, vesicles transported to the vicinity of spindle pole bodies are fused to each other to generate bilayered prospore membranes (PSMs). PSMs encapsulate the haploid nuclei that arise from the meiotic divisions and serve as platforms for spore wall deposition. Membrane trafficking plays an important role in supplying vesicles for these processes. The endocytosis-deficient mutant, end3Delta, sporulated poorly and the spores produced lost resistance to ether vapor, suggesting that END3-mediated endocytosis is important for sporulation. End3p-GFP localized to cell and spore peripheries in vegetative and sporulating cells and colocalized with actin structures. Correspondingly, the actin cytoskeleton appeared aberrant during sporulation in end3Delta. Analysis of meiosis in end3Delta mutants revealed that the meiotic divisions occurred with wild-type kinetics. Furthermore, PSMs were assembled normally. However, the levels of proteins required for spore wall synthesis and components of the spore wall layers at spores were reduced, indicating that end3Delta mutants are defective in spore wall synthesis. Thus, END3-mediated endocytosis is important for spore wall formation. Additionally, cytological analyses suggest that trafficking between the plasma membrane and PSMs is important earlier during sporulation.  相似文献   

10.
The Saccharomyces cerevisiae a-factor receptor (STE3) is subject to two modes of endocytosis: a constitutive process that occurs in the absence of ligand and a regulated process that is triggered by binding of ligand. Both processes result in delivery of the receptor to the vacuole for degradation. Receptor mutants deleted for part of the COOH- terminal cytoplasmic domain are disabled for constitutive, but not ligand-dependent internalization. Trans-acting mutants that impair constitutive endocytosis have been isolated. One of these, ren1-1, is blocked at a late step in the endocytic pathway, as receptor accumulates in a prevacuolar endosome-like compartment. REN1 is identical to VPS2, a gene required for delivery of newly synthesized vacuolar enzymes to the vacuole. Based on this identity, we suggest a model in which the transport pathways to the vacuole--the endocytic pathway and the vacuolar biogenesis pathway--merge at an intermediate endocytic compartment. As receptor also accumulates at the surface of ren1 cells, receptor may recycle from the putative endosome to the surface, or REN1 may also be required to carry out an early step in endocytosis.  相似文献   

11.
In yeast, sphingoid base synthesis is required for the internalization step of endocytosis and organization of the actin cytoskeleton. We show that overexpression of either one of the two kinases Pkh1p or Pkh2p, that are homologous to mammalian 3-phosphoinositide-dependent kinase-1 (PDK1), can specifically suppress the sphingoid base synthesis requirement for endocytosis. Pkh1p and Pkh2p have an overlapping function because only a mutant with impaired function of both kinases is defective for endocytosis. Pkh1/2p kinases are activated in vitro by nanomolar concentrations of sphingoid base. These results suggest that Pkh1/2p kinases are part of a sphingoid base-mediated signaling pathway that is required for the internalization step of endocytosis. The Pkc1p kinase that is phosphorylated by Pkh1/2p kinases and plays a role in endocytosis was identified as one of the downstream effectors of this signaling cascade.  相似文献   

12.
alpha-factor, one of two peptide hormones responsible for synchronized mating between MATa and MAT alpha-cell types in Saccharomyces cerevisiae, binds to its cell surface receptor and is internalized in a time-, temperature-, and energy-dependent manner (Chvatchko, Y., I. Howald, and H. Riezman. 1986. Cell. 46:355-364). After internalization, alpha-factor is delivered to the vacuole via vesicular intermediates and degraded there consistent with an endocytic mechanism (Singer, B., and H. Riezman. 1990. J. Cell Biol. 110:1911-1922; Chvatchko, Y., I. Howald, and H. Riezman. 1986. Cell. 46:355-364). We have isolated two mutants that are defective in the internalization process. Both mutations confer a recessive, temperature-sensitive growth phenotype upon cells that cosegregates with their endocytosis defect. Lucifer yellow, a marker for fluid-phase endocytosis, shows accumulation characteristics in the mutants that are similar to the uptake characteristics of 35S-alpha-factor. The endocytic defect in end4 cells appears immediately upon shift to restrictive temperature and is reversible at permissive temperature if new protein synthesis is allowed. Furthermore, the end4 mutation only affects alpha-factor internalization and not the later delivery of alpha-factor to the vacuole. Other vesicle-mediated processes seem to be normal in end3 and end4 mutants. END3 and END4 are the first genes shown to be necessary for the internalization step of receptor-borne and fluid-phase markers in yeast.  相似文献   

13.
The tetrameric amino acid sequence AsnProXTyr (NPXY), where X represents any amino acid, is conserved in the intracytoplasmic domains of several membrane proteins and has been postulated to play a role in receptor-mediated endocytosis. The human insulin receptor (hIR) contains a single copy of the sequence AsnProGluTyr (NPEY) in its intracytoplasmic domain. To determine if this putative consensus sequence is necessary for endocytic functions of hIR, we constructed a mutant receptor, hIR delta NPEY, that lacks NPEY sequence, stably expressed this mutant receptor in Chinese hamster ovary cells, and then studied its endocytic functions. When compared to wild type hIR similarly expressed in Chinese hamster ovary cells, the hIR delta NPEY mutant exhibited: 1) normal subunit organization and insulin binding affinity; 2) essentially normal internalization of covalent photoaffinity labeled insulin-receptor complexes; and 3) normal internalization of receptor-bound [125I]insulin as well as normal degradation and release of the internalized insulin. Therefore, we conclude that the NPEY sequence in the juxtamembrane domain of hIR is not necessary for its endocytic function.  相似文献   

14.
PtdIns(3,5)P(2) is required for cargo-selective sorting to the vacuolar lumen via the multivesicular body (MVB). Here we show that Ent3p, a yeast epsin N-terminal homology (ENTH) domain-containing protein, is a specific PtdIns(3,5)P(2) effector localized to endosomes. The ENTH domain of Ent3p is essential for its PtdIns(3,5)P(2) binding activity and for its membrane interaction in vitro and in vivo. Ent3p is required for protein sorting into the MVB but not for the internalization step of endocytosis. Ent3p is associated with clathrin and is necessary for normal actin cytoskeleton organization. Our results show that Ent3p is required for protein sorting into intralumenal vesicles of the MVB through PtdIns(3,5)P(2) binding via its ENTH domain.  相似文献   

15.
P26olf from olfactory tissue of frog, which may be involved in olfactory transduction or adaptation, is a Ca2+-binding protein with 217 amino acids. The p26olf molecule contains two homologous parts consisting of the N-terminal half with amino acids 1-109 and the C-terminal half with amino acids 110-217. Each half resembles S100 protein with about 100 amino acids and contains two helix-loop-helix Ca2+-binding structural motifs known as EF-hands: a normal EF-hand at the C-terminus and a pseudo EF-hand at the N-terminus. Multiple alignment of the two S100-like domains of p26olf with 18 S100 proteins indicated that the C-terminal putative EF-hand of each domain contains a four-residue insertion when compared with the typical EF-hand motifs in the S100 protein, while the N-terminal EF-hand is homologous to its pseudo EF-hand. We constructed a three-dimensional model of the p26olf molecule based on results of the multiple alignment and NMR structures of dimeric S100B(betabeta) in the Ca2+-free state. The predicted structure of the p26olf single polypeptide chain satisfactorily adopts a folding pattern remarkably similar to dimeric S100B(betabeta). Each domain of p26olf consists of a unicornate-type four-helix bundle and they interact with each other in an antiparallel manner forming an X-type four-helix bundle between the two domains. The two S100-like domains of p26olf are linked by a loop with no steric hindrance, suggesting that this loop might play an important role in the function of p26olf. The circular dichroism spectral data support the predicted structure of p26olf and indicate that Ca2+-dependent conformational changes occur. Since the C-terminal putative EF-hand of each domain fully keeps the helix-loop-helix motif having a longer Ca2+-binding loop, regardless of the four-residue insertion, we propose that it is a new, novel EF-hand, although it is unclear whether this EF-hand binds Ca2+. P26olf is a new member of the S100 protein family.  相似文献   

16.
The Saccharomyces cerevisiae actin-related protein Arp2p is an essential component of the actin cytoskeleton. We have tested its potential role in the endocytic and exocytic pathways by using a temperature-sensitive allele, arp2-1. The fate of the plasma membrane transporter uracil permease was followed to determine whether Arp2p plays a role in the endocytic pathway. Inhibition of normal endocytosis as revealed by maintenance of active uracil permease at the plasma membrane and strong protection against subsequent vacuolar degradation of the protein were observed in the mutant at the restrictive temperature. Furthermore, arp2-1 cells accumulated ubiquitin-permease conjugates, formed prior to internalization. These effects were also visible at permissive temperature, whereas the actin cytoskeleton appeared to be normally polarized. The soluble hydrolase carboxypeptidase Y and the lipophilic dye FM 4-64 were targeted normally to the vacuole in arp2-1 cells. Thus, Arp2p is required for internalization but does not play a major role in later steps of endocytosis. Synthetic lethality was demonstrated between arp2-1 and the endocytic mutant end3-1, suggesting participation of Arp2p and End3p in the same process. Finally, no evidence for a major defect in secretion was apparent; invertase secretion and delivery of uracil permease to the plasma membrane were unaffected in arp2-1 cells.  相似文献   

17.
《The Journal of cell biology》1996,135(6):1789-1800
The yeast membrane protein Kex2p uses a tyrosine-containing motif within the cytoplasmic domain for localization to a late Golgi compartment. Because Golgi membrane proteins mislocalized to the plasma membrane in yeast can undergo endocytosis, we examined whether the Golgi localization sequence or other sequences in the Kex2p cytoplasmic domain mediate endocytosis. To assess endocytic function, the Kex2p cytoplasmic domain was fused to an endocytosis-defective form of the alpha-factor receptor. Ste2p. Like intact Ste2p, the chimeric protein, Stex22p, undergoes rapid endocytosis that is dependent on clathrin and End3p. Uptake of Stex22p does not require the Kex2p Golgi localization motif. Instead, the sequence NPFSD, located 37 amino acids from the COOH terminus, is essential for Stex22p endocytosis. Internalization was abolished when the N, P, or F residues were converted to alanine and severely impaired upon conversion of D to A. NPFSD restored uptake when added to the COOH terminus of an endocytosis-defective Ste2p chimera lacking lysine-based endocytosis signals present in wild-type Ste2p. An NPF sequence is present in the cytoplasmic domain of the a- factor receptor, Ste3p. Mutation of this sequence prevented pheromone- stimulated endocytosis of a truncated form of Ste3p. Our results identify NPFSD as a clathrin-dependent endocytosis signal that is distinct from the aromatic amino acid-containing Golgi localization motif and lysine-based, ubiquitin-dependent endocytosis signals in yeast.  相似文献   

18.
It has been reported that the sequence Tyr20-X-Arg-Phe23 present within the cytoplasmic tail of the transferrin receptor may represent a tyrosine internalization signal (Collawn, J.F., Stangel, M., Kuhn, L.A., Esekogwu, V., Jing, S., Trowbridge, I.S., and Tainer, J. A. (1990) Cell 63, 1061-1072). However, as Tyr20 is not conserved between species (Alvarez, E., Gironès, N., and Davis, R. J. (1990) Biochem. J. 267, 31-35), the functional role of the putative tyrosine internalization signal is not clear. To address this question, we constructed a series of 32 deletions and point mutations within the cytoplasmic tail of the human transferrin receptor. The effect of these mutations on the apparent first order rate constant for receptor endocytosis was examined. It was found that the region of the cytoplasmic tail that is proximal to the transmembrane domain (residues 28-58) is dispensable for rapid endocytosis. In contrast, the distal region of the cytoplasmic tail (residues 1-27) was found to be both necessary and sufficient for the rapid internalization of the transferrin receptor. The region identified includes Tyr20-X-Arg-Phe23, but is significantly larger than this tetrapeptide. It is therefore likely that structural information in addition to the proposed tyrosine internalization signal is required for endocytosis. To test this hypothesis, we investigated whether a heterologous tyrosine internalization signal (from the low density lipoprotein receptor) could function to cause the rapid endocytosis of the transferrin receptor. It was observed that this heterologous tyrosine internalization signal did not allow rapid endocytosis. We conclude that the putative tyrosine internalization signal (Tyr20-Thr-Arg-Phe23) is not sufficient to determine rapid endocytosis of the transferrin receptor. The data reported here indicate that the transferrin receptor internalization signal is formed by a larger cytoplasmic tail structure located at the amino terminus of the receptor.  相似文献   

19.
M I Geli  A Wesp    H Riezman 《The EMBO journal》1998,17(3):635-647
The uptake step of receptor-mediated endocytosis in yeast is dependent on the calcium binding protein calmodulin (Cmd1p). In order to understand the role that Cmd1p plays, a search was carried out for possible targets among the genes required for the internalization process. Co-immunoprecipitation, two-hybrid and overlay assays demonstrated that Cmd1p interacts with Myo5p, a type I unconventional myosin. Analysis of the endocytic phenotype and the Cmd1p-Myo5p interaction in thermosensitive cmd1 mutants indicated that the Cmd1p-Myo5p interaction is required for endocytosis in vivo. However, the Cmd1p-Myo5p interaction requirement was partially overcome by deleting the calmodulin binding sites (IQ motifs) from Myo5p, suggesting that these motifs inhibit Myo5p function. Additionally, genetic and biochemical evidence obtained with a collection of cmd1 mutant alleles strongly suggests that Cmd1p plays an additional role in the internalization step of receptor-mediated endocytosis in yeast.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号