首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 828 毫秒
1.
2.
3.
Integrin beta subunits contain a highly conserved I-like domain that is known to be important for ligand binding. Unlike integrin I domains, the I-like domain requires integrin alpha and beta subunit association for optimal folding. Pactolus is a novel gene product that is highly homologous to integrin beta subunits but lacks associating alpha subunits [Chen, Y., Garrison, S., Weis, J. J., and Weis, J. H. (1998) J. Biol. Chem. 273, 8711-8718] and a approximately 30 amino acid segment corresponding to the specificity-determining loop (SDL) in the I-like domain. We find that the SDL is responsible for the defects in integrin beta subunit expression and folding in the absence of alpha subunits. When transfected in the absence of alpha subunits into cells, extracellular domains of mutant beta subunits lacking SDL, but not wild-type beta subunits, were well secreted and contained immunoreactive I-like domains. The purified recombinant soluble beta1 subunit with the SDL deletion showed an elongated shape in electron microscopy, consistent with its structure in alphabeta complexes. The SDL segment is not required for formation of alpha5beta1, alpha4beta1, alphaVbeta3, and alpha6beta4 heterodimers, but is essential for fomation of alpha6beta1, alphaVbeta1, and alphaLbeta2 heterodimers, suggesting that usage of subunit interface residues is variable among integrins. The beta1 SDL is required for ligand binding and for the formation of the epitope for the alpha5 monoclonal antibody 16 that maps to loop segments connecting blades 2 and 3 of beta-propeller domain of alpha5, but is not essential for nearby beta-propeller epitopes.  相似文献   

4.
5.
Production of human prolyl 4-hydroxylase in Escherichia coli   总被引:1,自引:0,他引:1  
Prolyl 4-hydroxylase (P4H) catalyzes the post-translational hydroxylation of proline residues in collagen strands. The enzyme is an alpha2beta2 tetramer in which the alpha subunits contain the catalytic active sites and the beta subunits (protein disulfide isomerase) maintain the alpha subunits in a soluble and active conformation. Heterologous production of the native alpha2beta2 tetramer is challenging and had not been reported previously in a prokaryotic system. Here, we describe the production of active human P4H tetramer in Escherichia coli from a single bicistronic vector. P4H production requires the relatively oxidizing cytosol of Origami B(DE3) cells. Induction of the wild-type alpha(I) cDNA in these cells leads to the production of a truncated alpha subunit (residues 235-534), which assembles with the beta subunit. This truncated P4H is an active enzyme, but has a high Km value for long substrates. Replacing the Met235 codon with one for leucine removes an alternative start codon and enables production of full-length alpha subunit and assembly of the native alpha2beta2 tetramer in E. coli cells to yield 2 mg of purified P4H per liter of culture (0.2 mg/g of cell paste). We also report a direct, automated assay of proline hydroxylation using high-performance liquid chromatography. We anticipate that these advances will facilitate structure-function analyses of P4H.  相似文献   

6.
The expression of selected nitrogen fixation (nif) genes from Klebsiella pneumoniae in foreign hosts provides an approach to determine the pathway, minimal genetic requirements, and host dependence of nitrogenase assembly. In this study, we investigated the assembly of the alpha 2 beta 2 MoFe protein, responsible for substrate binding and reduction, by introducing nifD and nifK (encoding respectively, the alpha and beta subunits) into Escherichia coli and the yeast Saccharomyces cerevisiae. In E. coli, both genes were expressed from the nifHDKY operon; in yeast, the genes, separately fused to the yeast ADH1 promoter, were introduced on two different plasmids. Denaturing immunoblot analyses demonstrated the presence of significant amounts of NifD and NifK in both hosts. In E. coli, the level or perhaps modification of NifD depended on the growth medium of the bacteria. Nondenaturing, anaerobic immunoblot assays revealed in E. coli, nif-specific antigens of lower electrophoretic mobility than Kp1, which may represent assembly intermediates. In yeast, no putative assembled products were evident, and the predominant antigens corresponded to the monomeric forms of the polypeptides. These results indicate that, unlike NifH, the Fe protein subunit (Berman, J., Gershoni, J. M., and Zamir, A. (1985) J. Biol. Chem. 260, 5240-5243), NifD and NifK are insufficient for the assembly of an electrophoretically Kp1-like structure. Homodimerization of nifK and probably of nifD primary gene products does not appear to occur spontaneously and hence is unlikely to represent the initial step in the assembly. The difference between the two hosts suggests that the cellular environment or mode of expression could affect the interaction between the two subunits.  相似文献   

7.
The pyridine nucleotide transhydrogenase (PNT) of Escherichia coli consists of two different subunits (alpha and beta) and assembles as a tetramer (alpha 2 beta 2) in the inner membrane. The pnt genes from E. coli have been cloned on a multicopy plasmid resulting in high level expression of the enzyme activity. We have studied the influence of the different segments of the polypeptide chains of the alpha and beta subunits on the assembly and function of the enzyme by constructing a series of deletion mutants for both of the subunits. Our results show that the assembly of the beta subunit is contingent upon the insertion of the alpha subunit into the membrane, while the alpha subunit can assemble independently of the beta subunit. All deletions constructed for the cytosolic portion of the alpha subunit gave no incorporation of the alpha subunit and, as a consequence, of the beta subunit, also. Of the four membrane-spanning regions of the alpha subunit, the last two were indispensable, while the deletion of the first two still allowed the association of alpha as well as of the beta subunit with the membrane. However, the enzyme was not functional. The two subunits were also loosely associated as mild detergent treatment released them from the membrane in contrast with the wild-type enzyme. Deletions within the beta subunit had little effect on the assembly of the alpha subunit, although less was incorporated. All deletions involving the cytosolic portion of the beta subunit resulted in loss of incorporation into the membrane. Of the eight membrane-spanning regions of the beta subunit, the deletion of regions 2-3, 2-4, 2-6, and 2-7 yielded significant association of both the subunits with the membrane. However, none of these mutants assembled a functional enzyme, and again the two subunits were loosely associated with the membrane. Based on the stringent requirement of the cytosolic portions of alpha and beta subunits for assembly, a model is proposed that suggests interactions between these two regions must occur prior to assembly.  相似文献   

8.
The collagen prolyl 4-hydroxylases (C-P4Hs), enzymes residing within the lumen of the endoplasmic reticulum, play a central role in the synthesis of all collagens. The vertebrate enzymes are alpha(2)beta(2) tetramers in which the two catalytic sites are located in the alpha subunits, and protein disulfide isomerase serves as the beta subunit. All attempts to assemble an active C-P4H tetramer from its subunits in in vitro cell-free systems have been unsuccessful, but assembly of a recombinant enzyme has been reported in several cell types by coexpression of the two types of subunit. An active type I C-P4H tetramer was obtained here by periplasmic expression in Escherichia coli strains BL21 and RB791. Further optimization for production by stepwise regulated coexpression of its subunits in the cytoplasm of a thioredoxin reductase and glutathione reductase mutant E. coli strain resulted in large amounts of human type I C-P4H tetramer. The specific activity of the C-P4H tetramer purified from the cytoplasmic expression was within the range of values reported for human type I C-P4H isolated as a nonrecombinant enzyme or produced in the endoplasmic reticulum of insect cells, but the expression level, about 25 mg/l in a fermenter, is about 5-10 times that obtained in insect cells. The enzyme expressed in E. coli differed from those present in vivo and those produced in other hosts in that it lacked the N glycosylation of its alpha subunits, which may be advantageous in crystallization experiments.  相似文献   

9.
The large beta and beta' subunits of the bacterial core RNA polymerase (RNAP) are highly conserved throughout evolution. Nevertheless, large sequence insertions in beta and beta' characterize specific evolutionary lineages of bacteria. The Thermus aquaticus RNAP beta' subunit contains a 283 residue insert between conserved regions A and B that is found in only four bacterial species. The Escherichia coli RNAP beta' subunit contains a 188 residue insert in the middle of conserved region G that is found in a wide range of bacterial species. Here, we present structural studies of these two beta' insertions. We show that the inserts comprise repeats of a previously characterized fold, the sandwich-barrel hybrid motif (as predicted from previous sequence analysis) and that the inserts serve significant roles in facilitating protein/protein and/or protein/nucleic acid interactions.  相似文献   

10.
11.
12.
Using an acetylcholine-derivatized affinity column, we have purified human alpha4beta2 neuronal nicotinic acetylcholine receptors (nAChRs) from a stably transfected HEK-293 cell line. Both the quantity and the quality of the purified receptor are suitable for applying biochemical methods to directly study the structure of the alpha4beta2 nAChR. In this first study, the lipid-protein interface of purified and lipid-reconstituted alpha4beta2 nAChRs was directly examined using photoaffinity labeling with the hydrophobic probe 3-(trifluoromethyl)-3-(m-[125I]iodophenyl)diazirine ([125I]TID). [125I]TID photoincorporated into both alpha4 and beta2 subunits, and for each subunit the labeling was initially mapped to fragments containing the M4 and M1-M3 transmembrane segments. For both the alpha4 and beta2 subunits, approximately 60% of the total labeling was localized within fragments that contain the M4 segment, which suggests that the M4 segment has the greatest exposure to lipid. Within M4 segments, [125I]TID labeled homologous amino acids alpha4-Cys582/beta2-Cys445, which are also homologous to the [125I]TID-labeled residues alpha1-Cys418 and beta1-Cys447 in the lipid-exposed face of Torpedo nAChR alpha1M4 and beta1M4, respectively. Within the alpha4M1 segment, [125I]TID labeled residues Cys226 and Cys231, which correspond to the [125I]TID-labeled residues Cys222 and Phe227 at the lipid-exposed face of the Torpedo alpha1M1 segment. In beta2M1, [125I]TID labeled beta2-Cys220, which is homologous to alpha4-Cys226. We conclude from these studies that the alpha4beta2 nAChR can be purified from stably transfected HEK-293 cells in sufficient quantity and purity for structural studies and that the lipid-protein interfaces of the neuronal alpha4beta2 nAChR and the Torpedo nAChR display a high degree of structural homology.  相似文献   

13.
14.
The synthesis and assembly of chloroplast H+-ATPase complex were studied by analyzing the incorporation of [35S]methionine into the constituent subunits with isolated intact chloroplasts and with thylakoid membranes that had been prepared from the chloroplasts so that they would retain ribosomes. The complex was isolated from thylakoids after labeling and identified by immunoprecipitation with an antiserum specific to CF1. The mechanism for the assembly of the complex was demonstrated to be active in the isolated chloroplasts by the following observations: the plastid genome-regulated subunits (alpha, beta, epsilon, I, and III) were labeled by in organello translation and recovered with the complex, and three other subunits (gamma, delta, and II) were labeled when intact chloroplasts were incubated with translation products from polyadenylated RNA. The two largest subunits, alpha and beta, were translated on thylakoid-bound ribosomes when the thylakoid membranes were incubated with soluble factors from Escherichia coli. They were recovered with the H+-ATPase complex, suggesting that they are translated on the bound ribosomes in the chloroplast, and that the isolated membranes retain the ability to assemble a complete complex. Provided that these observations are the result of de novo assembly of the complex, the imported and processed nuclear-coded subunits are presumed to be pooled not in stroma but on the membrane.  相似文献   

15.
We have examined the role of a highly conserved arginine (R209), which flanks the M1 transmembrane segment of nAChRs, in the biogenesis and function of neuronal nAChRs. Point mutations revealed that, in alphaBgtx-sensitive neuronal alpha7 nAChRs, the conserved arginine is required for the transport of assembled receptors to the cell surface. By contrast, R209 does not play any role in the transport of assembled alpha-Bgtx-insensitive neuronal alpha3beta4 nAChRs to the cell surface. However, a basic residue at this position of alpha3 and beta4 subunits is necessary for either synthesis, folding, or assembly of alpha3beta4 receptors. Moreover, electrophysiological experiments revealed that in alpha3beta4 receptors the conserved arginine of the alpha3 subunit is involved in either coupling agonist binding to the channel or regulating single channel kinetics.  相似文献   

16.
A sequence of 10 amino acids (I-C-S-D-K-T-G-T-L-T) of ion motive ATPases such as Na+/K+-ATPase is similar to the sequence of the beta subunit of H+-ATPases, including that of Escherichia coli (I-T-S-T-K-T-G-S-I-T) (residues 282-291). The Asp (D) residue phosphorylated in ion motive ATPase corresponds to Thr (T) of the beta subunit. This substitution may be reasonable because there is no phosphoenzyme intermediate in the catalytic cycle of F1-ATPase. We replaced Thr-285 of the beta subunit by an Asp residue by in vitro mutagenesis and reconstituted the alpha beta gamma complex from the mutant (or wild-type) beta and wild-type alpha and gamma subunits. The uni- and multisite ATPase activities of the alpha beta gamma complex with mutant beta subunits were about 20 and 30% of those with the wild-type subunit. The rate of ATP binding (k1) of the mutant complex under uni-site conditions was about 10-fold less than that of the wild-type complex. These results suggest that Thr-285, or the region in its vicinity, is essential for normal catalysis of the H+-ATPase. The mutant complex could not form a phosphoenzyme under the conditions where the H+/K+-ATPase is phosphorylated, suggesting that another residue(s) may also be involved in formation of the intermediate in ion motive ATPase. The wild-type alpha beta gamma complex had slightly different kinetic properties from the wild-type F1, possibly because it did not contain the epsilon subunit.  相似文献   

17.
Subunit-subunit interactions are critical for the assembly of the core of Escherichia coli RNA polymerase. The mutant alpha-subunit C131A is unable to complement the temperature-sensitive alpha-R45C mutant strain, which is defective for binding of the beta-subunit. In vitro reconstitution experiments, however, indicate that the alpha-C131A variant is able to form the intermediate alpha2beta, but is defective in contacting the beta'-subunit. We used this alpha-C131A mutant to isolate a suppressor mutation in the beta'-subunit. Genetic and biochemical characterization of the beta' suppressor indicates the allele-specific nature of its effect. Sequence analysis of the suppressor revealed a single substitution of Gly at position 333, an evolutionarily conserved position in the conserved region C of the beta'-subunit, by Asp. However, the crystal structure of the bacterial RNA polymerase indicates that the primary mutation (alpha-C131A) and its suppressor lie far apart. Thus, we propose that long-range interactions, as in this case, may play an important role in the functional assembly of E. coli RNA polymerase.  相似文献   

18.
19.
Alpha subunit genes of initial polyaromatic hydrocarbon (PAH) dioxygenases were used as targets for the PCR detection of PAH-degrading strains of the genera Pseudomonas, Comamonas and Rhodococcus which were obtained from activated sludge or soil samples. Sequence analysis of PCR products from several Pseudomonas strains showed that alpha subunits (nahAc allele) of this genus are highly conserved. PCR primers for the specific detection of alpha subunit genes of initial PAH dioxygenases from Pseudomonas strains were not suitable for detecting the corresponding genes from the genera Comamonas and Rhodococcus. Southern analysis using a heterologous gene probe derived from the P. putida OUS82 PAH dioxygenase alpha subunit identified segments of the PAH-degradation gene cluster from C. testosteroni strain H. Parts of this gene cluster containing three subunits of the initial PAH dioxygenase were isolated. These three subunits [ferredoxin (pahAb), alpha (pahAc) and beta (pahAd) subunit] were amplified by PCR as one fragment and expressed in Escherichia coli DH5alpha, resulting in an active initial dioxygenase with the ability to transform indole and phenanthrene. The DNA sequence alignment of alpha subunits from C. testosteroni H and various PAH-degrading bacteria permitted the design of new primers and oligonucleotide probes which are useful for the detection of the initial PAH dioxygenases from strains of Pseudomonas, Comamonas and Rhodococcus.  相似文献   

20.
The rate of import and assembly of F1-ATPase in Saccharomyces cerevisiae   总被引:1,自引:0,他引:1  
Subunit specific antiserum can be employed to study the course of ATPase assembly in mitochondria isolated from bakers' yeast. Comparing rates of subunit import with rates of enzyme assembly indicated that no substantial pool of unassembled subunits exists for the three largest ATPase peptides (alpha, beta, and gamma). Blocking import of specific ATPase subunits, however, did reveal a possible accumulation of unassembled alpha and gamma subunits in isolated mitochondria. The kinetic experiments also revealed a lag in the import of beta subunit relative to the uptake of alpha and gamma precursors. Experiments conducted in yeast cells confirmed that beta subunit is assembled soon after it is imported, but did not indicate a delay in import relative to the other subunits of F1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号