首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fouling species produce adhesive polymers during the settlement, adhesion and colonization of new surfaces in the marine environment. The present paper tests the hypothesis that enzymes of the appropriate specificity may prevent biofouling by hydrolysing these adhesive polymers. Seventeen commercially available enzyme preparations designed originally for bulk use in a range of end-use applications were tested for their effects on the settlement and/or adhesion of three major fouling species, viz. the green alga Ulva linza, the diatom Navicula perminuta and the barnacle Balanus amphitrite. The serine-proteases were found to have the broadest antifouling potential reducing the adhesion strength of spores and sporelings of U. linza, cells of N. perminuta and inhibiting settlement of cypris larvae of B. amphitrite. Mode-of-action studies on the serine-protease, Alcalase, indicated that this enzyme reduced adhesion of U. linza in a concentration-dependent manner, that spores of the species could recover their adhesive strength if the enzyme was removed and that the adhesive of U. linza and juvenile cement of B. amphitrite became progressively less sensitive to hydrolysis as they cured.  相似文献   

2.
This study examined the effects of a range of black, grey and white substrata on the growth and attachment strength of Ulva sporelings on glass and polydimethylsiloxane (Silastic-T2) surfaces. The rate of development of sporelings was strongly influenced by the colour of the substratum on which they grew. On black backgrounds, sporelings grew slowly and germination was delayed. Laboratory screening methods for antifouling and fouling-release coatings that rely on the growth of Ulva sporelings can be compromised if samples are of different colours. Hydrodynamic removal of sporelings from coatings may also be affected by substratum colour, since smaller plants generate lower hydrodynamic forces making them more difficult to remove.  相似文献   

3.
Novel, non-toxic antifouling technologies are focused on the manipulation of surface topography to deter settlement of the dispersal stages of fouling organisms. This study investigated the effect of the aspect ratio (feature height/feature width) of topographical features engineered in polydimethylsiloxane, on the settlement of cyprids of Balanus amphitrite and zoospores of Ulva linza. The correlation of relative aspect ratios to antifouling efficacy was proven to be significant. An increase in aspect ratio resulted in an increase of fouling deterrence for both zoospores and cyprids. The spore density of Ulva was reduced 42% with each unit increase in aspect ratio of the Ulva-specific Sharklet AF topography. Similarly, the number of settled cyprids was reduced 45% with each unit increase in aspect ratio. The newly described barnacle-specific Sharklet AF topography (40 microm feature height, aspect ratio of 2) reduced cyprid settled by 97%. Techniques have been developed to superimpose the smaller Ulva-specific topographies onto the barnacle-specific surfaces into a hierarchical structure to repel both organisms simultaneously. The results for spore settlement on first-generation hierarchical surfaces provide insight for the efficacious design of such structures when targeting multiple settling species.  相似文献   

4.
The attachment mechanism of pandarid adhesion pads is described from observations of their externally ridged structure and internal construction in three species; Pandarus bicolor Leach, 1816, Dinemoura latifolia (Steenstrup and Lutken, 1861) and Echthrogaleus coleoptratus (Guerin-Meneville, 1837). The host's external skin morphology was also examined, since parasite attachment mechanism and host surface can be considered as components of a single system.

The results emphasise the importance of the physical nature of the pad's surface. This is inferred from the compliance of the cuticle and subsurface structure, and the presence of cuticular ridging. The pads probably prevent pandarids from being dislodged by hydrodynamic drag, by increasing overall adhesion. It is proposed that this is achieved in different ways, by two types of adhesion pad identified here, distinguishable by their external structure and location. Type I pads are suggested to remove interfacial water and increase surface contact by one of two contrasting methods. The ridges may act as tyre treads, by channelling water from the contact surface. Alternatively, the channels between ridges may be hydrophobic and behave as dewetting structures, preventing water from entering in the same way that troughs between surface nodules function to produce superhydrophobicity on lotus leaves. Type I adhesion pads are also suggested to aid attachment by hindering the process of peeling, by which they are thought to be removed by hydrodynamic drag. Type II pads are more likely to function as one-way frictional attachments. Both types of pad appear to be attached passively, since they lack muscles inserting into them. The adhesive mechanism of each, which functions most effectively on hard surfaces, may explain why pads are absent or reduced on pandarids which parasitise the softer, unscaled surfaces of hosts.

Pandarids predominantly parasitise the skin and fins of fast-swimming sharks. This may be because the scales are characteristically smaller in these species and are more easily encircled by the primary attachment appendages, the maxillipeds.

This is thought to be the first published report to reveal frictional attachment structures from the Crustacea, which have convergently evolved in many terrestrial Arthropoda.  相似文献   


5.
This study examined the effects of a range of black, grey and white substrata on the growth and attachment strength of Ulva sporelings on glass and polydimethylsiloxane (Silastic®-T2) surfaces. The rate of development of sporelings was strongly influenced by the colour of the substratum on which they grew. On black backgrounds, sporelings grew slowly and germination was delayed. Laboratory screening methods for antifouling and fouling-release coatings that rely on the growth of Ulva sporelings can be compromised if samples are of different colours. Hydrodynamic removal of sporelings from coatings may also be affected by substratum colour, since smaller plants generate lower hydrodynamic forces making them more difficult to remove.  相似文献   

6.
An atomic force microscope has been used to study the adhesion of Bacillus mycoides spores to a hydrophilic glass surface and a hydrophobic-coated glass surface. AFM images of spores attached to the hydrophobic-coated mica surface allowed the measurement of spore dimensions in an aqueous environment without desiccation. The spore exosporium was observed to be flexible and to promote the adhesion of the spore by increasing the area of spore contact with the surface. Results from counting procedures using light microscopy matched the density of spores observed on the hydrophobic-coated glass surface with AFM. However, no spores were observed on the hydrophilic glass surface with AFM, a consequence of the weaker adhesion of the spores at this surface. AFM was also used to quantify directly the interactions of B. mycoides spores at the two surfaces in an aqueous environment. The measurements used "spore probes" constructed by immobilizing a single spore at the apex of a tipless AFM cantilever. The data showed that stretching and sequential bond breaking occurred as the spores were retracted from the hydrophilic glass surface. The greatest spore adhesion was measured at the hydrophobic-coated glass surface. An attractive force on the spores was measured as the spores approached the hydrophobic-coated surface. At the hydrophilic glass surface, only repulsive forces were measured during the approach of the spores. The AFM force measurements were in qualitative agreement with the results of a hydrodynamic shear adhesion assay that used a spinning disk technique. Quantitatively, AFM measurements of adhesive force were up to 4 x 10(3) times larger than the estimates made using the spinning disk data. This is a consequence of the different types of forces applied to the spore in the different adhesion assays. AFM has provided some unique insights into the interactions of spores with surfaces. No other instrument can make such direct measurements for single microbiological cells.  相似文献   

7.
The marine antifouling and fouling-release performance of titanium surfaces coated with a bio-inspired polymer was investigated. The polymer consisted of methoxy-terminated poly(ethylene glycol) (mPEG) conjugated to the adhesive amino acid l-3,4-dihydroxyphenylalanine (DOPA) and was chosen based on its successful resistance to protein and mammalian cell fouling. Biofouling assays for the settlement and release of the diatom Navicula perminuta and settlement, growth and release of zoospores and sporelings (young plants) of the green alga Ulva linza were carried out. Results were compared to glass, a poly(dimethylsiloxane) elastomer (Silastic T2) and uncoated Ti. The mPEG-DOPA3 modified Ti surfaces exhibited a substantial decrease in attachment of both cells of N. perminuta and zoospores of U. linza as well as the highest detachment of attached cells under flow compared to control surfaces. The superior performance of this polymer over a standard silicone fouling-release coating in diatom assays and approximately equivalent performance in zoospore assays suggests that this bio-inspired polymer may be effective in marine antifouling and fouling-release applications.  相似文献   

8.
Bioadhesion and surface wettability are influenced by microscale topography. In the present study, engineered pillars, ridges and biomimetic topography inspired by the skin of fast moving sharks (Sharklet AF) were replicated in polydimethylsiloxane elastomer. Sessile drop contact angle changes on the surfaces correlated well (R2 = 0.89) with Wenzel and Cassie and Baxter's relationships for wettability. Two separate biological responses, i.e. settlement of Ulva linza zoospores and alignment of porcine cardiovascular endothelial cells, were inversely proportional to the width (between 5 and 20 microm) of the engineered channels. Zoospore settlement was reduced by approximately 85% on the finer (ca 2 microm) and more complex Sharklet AF topographies. The response of both cell types suggests their responses are governed by the same underlying thermodynamic principles as wettability.  相似文献   

9.

Enteromorpha , the most important macroalga that fouls ships, produces very large numbers of swimming spores that respond to a number of settlement cues. Responses to topographic cues have been investigated using surfaces with defined microtopographies fabricated from polydimethyl siloxane elastomer (PDMS). The topographic features were based on two designs, (a) a series of 5 or 1.5 w m deep valleys with valley floors and ridges varying between 5 and 20 w m, and (b) pillars of 5 w m diameter and 5 or 1.5 w m height, spaced 5-20 w m apart. The features were arranged in blocks to provide the swimming spores with a 'choice' of where to settle. Swimming spores settled preferentially in the valleys and against the pillars. The number of spores that settled increased very substantially as the width of the valley decreased. The majority of spores settled in the angle between the valley floor and sidewall. Lower numbers settled on the surfaces with lower profile features. Silica beads of similar dimension to the spore body were used to determine whether the spatial relationships between settled spores and the topographic features were a consequence of active settlement behaviours. The results are discussed in relation to the energy needs for spores to adhere to various surface features.  相似文献   

10.
Investigations on the adhesion of a diverse range of biological systems including proteins, tissues, microbes, algae and invertebrates all indicate that minimal long-term adhesion is associated with surfaces having initial surface tensions between 20 and 30 dynes/cm (mN/m), i.e. low energy surfaces. However, all surfaces rapidly become modified on immersion in natural waters through the adsorption of ‘conditioning films’, which may influence subsequent adhesive events associated with the permanent attachment of organisms. In this review the various methods which have been used to measure the strength of attachment of both micro- and macrofouling to surfaces will be outlined and results presented for substrata with a range of surface energies. Data will be presented which show that surface energy can elicit different responses in different organisms. For most organisms, minimal adhesion is associated with low surface energy. Silicone elastomers and fluoropolymers have received most attention regarding their potential use as foul release coatings. Results on the antifouling performance of these classes of materials will be discussed.  相似文献   

11.
AIMS: To develop a method to screen antifouling agents against marine bacterial adhesion as a sensitive, rapid and quantitative microplate fluorescent test. METHODS AND RESULTS: Our experimental method is based on a natural biofilm formed by mono-incubation of the marine bacterium Pseudoalteromonas sp. D41 in sterile natural sea water in a 96-well polystyrene microplate. The 4'6-diamidino-2-phenylindole dye was used to quantify adhered bacteria in each well. The total measured fluorescence in the wells was correlated with the amount of bacteria showing a detection limit of one bacterium per 5 microm(2) and quantifying 2 x 10(7) to 2 x 10(8) bacteria adhered per cm(2). The antifouling properties of three commercial surface-active agents and chlorine were tested by this method in the prevention of adhesion and also in the detachment of already adhered bacteria. The marine bacterial adhesion inhibition rate depending on the agent concentration showed a sigmoid shaped dose-response curve. CONCLUSIONS: This test is well adapted for a rapid and quantitative first screening of antifouling agents directly in seawater in the early steps of marine biofilm formation. Significance AND IMPACT OF THE STUDY: In contrast to the usual screenings of antifouling products which detect a bactericidal activity, this test is more appropriate to screen antifouling agents for bacterial adhesion removal or bacterial adhesion inhibition activities. This screening test focuses on the antifouling properties of the products, especially the initial steps of marine biofilm formation.  相似文献   

12.
Identification of settlement cues for marine fouling organisms opens up new strategies and methods for biofouling prevention, and enables the development of more effective antifouling materials. To this end, the settlement behaviour of zoospores of the green alga Ulva linza onto cationic oligopeptide self-assembled monolayers (SAMs) has been investigated. The spores interact strongly with lysine- and arginine-rich SAMs, and their settlement appears to be stimulated by these surfaces. Of particular interest is an arginine-rich oligopeptide, which is effective in attracting spores to the surface, but in a way which leaves a large fraction of the settled spores attached to the surface in an anomalous fashion. These 'pseudo-settled' spores are relatively easily detached from the surface and do not undergo the full range of cellular responses associated with normal commitment to settlement. This is a hitherto undocumented mode of settlement, and surface dilution of the arginine-rich peptide with a neutral triglycine peptide demonstrates that both normal and anomalous settlement is proportional to the surface density of the arginine-rich peptide. The settlement experiments are complemented with physical studies of the oligopeptide SAMs, before and after extended immersion in artificial seawater, using infrared spectroscopy, null ellipsometry and contact angle measurements.  相似文献   

13.
The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5 microns wide pillars or ridges separated by 5, 10, or 20 microns wide channels. Pattern depths were 5 or 1.5 microns. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5 microns wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5 microns, 10 microns and 20 microns. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.  相似文献   

14.
The settlement and release of Ulva spores from chemically modified, micro-engineered surface topographies have been investigated using poly(dimethyl siloxane) elastomers (PDMSe) with varying additions of non-network forming poly(dimethyl siloxane) based oils. The topographic features were based on 5?μm wide pillars or ridges separated by 5, 10, or 20?μm wide channels. Pattern depths were 5 or 1.5?μm. Swimming spores showed no marked difference in settlement on smooth surfaces covered with excess PDMS oils. However, incorporation of oils significantly reduced settlement density on many of the surfaces with topographic features, in particular, the 5?μm wide and deep channels. Previous results, confirmed here, demonstrate preferences by the spores to settle in channels and against pillars with spatial dimensions of 5?μm, 10?μm and 20?μm. The combination of lubricity and pillars significantly reduced the number of attached spores compared to the control, smooth, unmodified PDMSe surfaces when exposed to turbulent flow in a flow channel. The results are discussed in relation to the energy needs for spores to adhere to various surface features and the concepts of ultrahydrophobic surfaces. A factorial, multi-level experimental design was analyzed and a 2nd order polynomial model was regressed for statistically significant effects and interactions to determine the magnitude and direction of influence on the spore density measurements between factor levels.  相似文献   

15.
16.

The efficiency of cleaning in place procedures in dairy industries can be greatly affected by the presence of spore‐forming bacteria, which are able to adhere strongly to surfaces and to survive disinfection procedures. Microbial adhesion has been extensively studied, but very few studies have yet reported on the hydrodynamic removal of microorganisms, due to the lack of simple, routinely performable techniques. In this paper, a methodology using a coaxial cylinder double gap viscometer is described, to study the removal kinetics of Bacillus cereus spores from a stainless steel support under hydrodynamic conditions. This method was shown to be reproducible, sensitive and easy to perform, and allowed spore hydrodynamic removal kinetics to be studied as a function of both adhesion and detachment conditions. A high ionic strength attachment medium was shown to enhance adhesion forces, provided it did not contain macromolecules. An increase in shear stress was found to be favorable to spore detachment (4 to 5 times more spores were detached at 28 Pa than at 2 Pa), but removal kinetics were not found to be significantly different for 2 and 15 Pa. Thus, the effect of shear stress on spore removal kinetics may not be linear.  相似文献   

17.
Inhibition of biofouling by marine microorganisms and their metabolites   总被引:2,自引:0,他引:2  
Dobretsov S  Dahms HU  Qian PY 《Biofouling》2006,22(1-2):43-54
Development of microbial biofilms and the recruitment of propagules on the surfaces of man-made structures in the marine environment cause serious problems for the navies and for marine industries around the world. Current antifouling technology is based on the application of toxic substances that can be harmful to the natural environment. For this reason and the global ban of tributyl tin (TBT), there is a need for the development of "environmentally-friendly" antifoulants. Marine microbes are promising potential sources of non-toxic or less-toxic antifouling compounds as they can produce substances that inhibit not only the attachment and/or growth of microorganisms but also the settlement of invertebrate larvae and macroalgal spores. However, so far only few antilarval settlement compounds have been isolated and identified from bacteria. In this review knowledge about antifouling compounds produced by marine bacteria and diatoms are summarised and evaluated and future research directions are highlighted.  相似文献   

18.
To gain a better understanding of the factors influencing spore adhesion in dairy manufacturing plants, casein-modified glass surfaces were prepared and characterized and their effect on the adhesion kinetics of spores from a Geobacillus sp., isolated from a dairy manufacturing plant (DMP) was assessed using a flow chamber. Surfaces were produced by initially silanizing glass using (3-glycidyloxypropyl) trimethoxysilane (GPS) or (3-aminopropyl) triethoxysilane to form epoxy-functionalized (G-GPS) or amino-functionalized glass (G-NH(2)) substrata. Casein was grafted to the G-GPS directly by its primary amino groups (G-GPS-casein) or to G-NH(2) by employing glutaraldehyde as a linking agent (G-NH(2)-glutar-casein). The surfaces were characterised using streaming potential measurements, contact angle goniometry, infrared spectroscopy and scanning electron microscopy. The attachment rate of spores suspended in 0.1?M KCl at pH 6.8, was highest on the positively charged (+14 mV) G-NH(2) surface (333 spores cm(-2) s(-1)) compared to the negatively charged glass (-22 mV), G-GPS (-20 mV) or G-GPS-casein (-21 mV) surfaces (162, 17 or 6 spores cm(-2) s(-1) respectively). Whilst there was a clear decrease in attachment rate to negatively charged casein-modified surfaces compared to the positively charged amine surface, there was no clear relationship between surface hydrophobicity and spore attachment rate.  相似文献   

19.
Callow ME  Callow JA 《Biofouling》2000,15(1-3):49-56
The green alga Enteromorpha is the most important macroalga that fouls ships, submarines and underwater structures. Major factors in its success in colonising new substrata are the production of enormous numbers of swimming spores and their ability to locate surfaces on which to settle. Factors facilitating the settlement and adhesion of asexual zoospores are examined in this article. Settlement and adhesion may be regulated by topographical, biological, chemical and physico-chemical cues, all of which are modified by the presence of microbial biofilm. The level of gregarious zoospore settlement is related to spore density and may be mediated by a number of external cues including fatty acids and 'detritus'.  相似文献   

20.
Marine substrata possess cues that influence the behavior of fouling organisms. Initial adhesion of fouling algal zoospores to surfaces is also theorized to depend primarily upon interactions between substrata and spore cell bodies and flagellar membranes. In an effort to identify cues and surface characteristics that influence spore settlement and early development, the effects of bioactive echinoderm extracts, surface charge, and surface hydrophobicity were examined individually and in tandem on zoospore settlement and germination in Hincksia irregularis. Experiments utilizing 96-well plastic culture plates confirmed that spore settlement and germination were significantly affected by surface charge and hydrophobicity as well as by echinoderm metabolites, both individually and in tandem. Spore settlement rates in the dark over 30 min were > 400% higher on hydrophobic surfaces than on positively and negatively charged surfaces. Spore germling numbers were > 300% higher on hydrophobic surfaces than on positively and negatively charged surfaces when spores were allowed to settle in the light for 30 min and the settled spores allowed to subsequently germinate for 24 h. Spore germling numbers were consistently > 25% higher on hydrophobic surfaces than on positively and negatively charged surfaces when equal numbers of spores were allowed to completely settle in the light and subsequently germinate for 24 h. H. irregularis germ tube lengths were also significantly longer on positively charged plates than on negatively charged plates. All echinoderm extracts tested had significant effects on germination and settlement at levels below those of estimated ecological concentrations. Short-term (30 min) exposure and subsequent germination experiments indicated that higher concentrations of extracts had rapid toxic effects on algal spores. Synchronous effects of echinoderm extracts and plate charge upon spore settlement varied considerably and did not show a strong dose response relationship. Long-term (24 h) exposure of spores to echinoderm extracts had dosage dependent effects on germination and spore survival. The results of this study indicate that H. irregularis spores possess the capacity for complex responses to their environment, utilizing combined cues of surface charge, surface energy and biochemistry to determine where to settle and germinate. These responses may aid spores in the detection of suitable substrata and conditions for settlement in the marine environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号