首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Subpopulations of endosomes generated at different stages of the endocytic pathway were isolated by a high-gradient magnetic separation followed by a Percoll density gradient centrifugation. Rat livers were perfused for 5 min with asialoganglioside (ASG)-containing ferrite particles and chased at 37 degrees C. At various times after the internalization, the endocytic vesicles containing ferrite particles were isolated by the magnetic separation. Isolated fractions contained endosomes until 15-min perfusion, after which most of the particles were transported to lysosomes. The endosomal fractions isolated after the 5- or 15-min perfusions were further analyzed by 30% Percoll density gradient centrifugation. The endosomes after 5-min perfusion showed peaks around the density of 1.05 g/ml (peak I) and 1.07 g/ml (peak Is), both of which contained asialoglycoprotein receptors. In the 15-min perfusion, another peak of endosomes (peak II) was observed at the higher density of 1.09 g/ml without the receptors, in addition to peak I. These endosomes had their own characteristic proteins. Some proteins were common in the subgroups of endosomes. These results suggest that the endosome I containing the ligands and the receptors was first produced after endocytosis and, through the endosome is, was scissioned into the endosome II containing the ligands. The endosome II was then fused with primary lysosomes for proteolytic cleavage of ligands.  相似文献   

2.
We have used defined subcellular fractions to reconstitute in a cell-free system vesicle fusions occurring in the endocytic pathway. The endosomal fractions were prepared by immuno-isolation using as antigen an epitope located on a foreign protein, the transmembrane glycoprotein G (G-protein) of vesicular stomatitis virus. The G-protein was first implanted in the cell plasma membrane and subsequently endocytosed for 15 to 30 min at 37 degrees C. The endosomal fractions were immuno-isolated on a solid support using as antigen the cytoplasmic domain of the G-protein in combination with a specific monoclonal antibody. For comparative studies the plasma membrane was immuno-isolated from cells in the absence of G internalization with a monoclonal antibody against the exoplasmic domain of the G-protein. The immuno-isolated endosomal vesicles contained 70% of horseradish peroxidase internalized in the endosome fluid phase, exhibited an acidic luminal pH as shown by acridine orange fluorescence and differed in their protein composition from the immuno-isolated plasma membrane fraction. The fusion of endocytic vesicles originating from different stages of the pathway was studied in a cell-free assay using both a bio-chemical and a morphological detection system. These well defined endosomal vesicles were immuno-isolated with the G-protein on the solid support and provided the recipient compartment of the fusion (acceptor). They were mixed with a post-nuclear supernatant containing endosomes loaded with exogenous lactoperoxidase (donor) at 37 degrees C. Fusion delivered the donor peroxidase to the lumen of acceptor vesicles permitting fusion-specific iodination of the G-protein itself. The fusion of vesicles required ATP and was detected only with an endosomal fraction prepared after internalization of the G-protein for 15 min at 37 degrees C but not with a plasma membrane or with an endosomal fraction prepared after 30 min G-protein internalization.  相似文献   

3.
Earlier studies have shown that transferrin binds to specific receptors on the reticulocyte surface, clusters in coated pits and is then internalized via endocytic vesicles. Guinea-pig reticulocytes also have specific receptors for ferritin. In this paper ferritin and transferrin endocytosis by guinea-pig reticulocytes was studied by electron microscopy using the natural electron density of ferritin and colloidal gold-transferrin (AuTf). At 4 degrees C both ligands bound to the cell surface. At 37 degrees C progressive uptake occurred by endocytosis. AuTf and ferritin clustered in the same coated pits and small intracellular vesicles. After 60 min incubations the ligands colocalized to large multivesicular endosomes (MVE), still membrane-bound. MVE subsequently fused with the plasma membrane and released AuTf, ferritin and inclusions by exocytosis. All endocytic structures labelled with AuTf contained ferritin, but 23 to 35% of ferritin-labelled endocytic structures contained no AuTf. These data suggest that ferritin and transferrin are internalized through the same pathway involving receptors, coated pits and vesicles, but that these proteins are recycled only partly in common.  相似文献   

4.
Tetrameric peptide-MHC class I complexes ("tetramers") are proving invaluable as reagents for characterizing immune responses involving CTLs. However, because the TCR can exhibit a degree of promiscuity for binding peptide-MHC class I ligands, there is potential for cross-reactivity. Recent reports showing that the TCR/peptide-MHC interaction is dramatically dependent upon temperature led us to investigate the effects of incubation temperature on tetramer staining. We find that tetramers rapidly stain CTLs with high intensity at 37 degrees C. We examine the fine specificity of tetramer staining using a well-characterized set of natural epitope variants. Peptide variants that elicit little or no functional cellular response from CTLs can stain these cells at 4 degrees C but not at 37 degrees C when incorporated into tetramers. These results suggest that some studies reporting tetramer incubations at 4 degrees C could detect cross-reactive populations of CTLs with minimal avidity for the tetramer peptide, especially in the tetramer-low population. For identifying specific CTLs among polyclonal cell populations such as PBLs, incubation with tetramers at 37 degrees C improves the staining intensity of specific CTLs, resulting in improved separation of tetramer-high CD8+ cells. Confocal microscopy reveals that tetramers incubated at 37 degrees C can be rapidly internalized by specific CTLs into vesicles that overlap with the early endocytic compartment. This TCR-specific internalization suggests that coupling of tetramers or analogues with toxins, which are activated only after receptor internalization, may create immunotoxins capable of killing CTLs of single specificities.  相似文献   

5.
The participation of cell surface anionic sites on the interaction between tachyzoites of Toxoplasma gondii and macrophages and the process of phagosome-lysosome fusion were analyzed using cationized ferritin as a marker of cell surface anionic sites and albumin-colloidal gold as a marker for secondary lysosomes. Incubation of either the macrophages or the parasites with cationized ferritin before the interaction increased the ingestion of parasites by macrophages. Anionic sites of the macrophage's surface, labeled with cationized ferritin before the interaction, were internalized together with untreated parasites. However, after interaction with glutaraldehyde-fixed or specific antibody-coated parasites, the cationized ferritin particles were observed in endocytic vacuoles which did not contain parasites. Macrophages previously labeled with albumin-gold at 37 degrees C, were incubated in the presence of cationized ferritin at 4 degrees C and then incubated with untreated or specific antibody-coated parasites. After interaction with opsonized parasites, the colloidal gold particles were observed in the parasitophorous vacuoles while the cationized ferritin particles were observed in cytoplasmic vesicles. However, when the interaction was carried out with untreated parasites, the parasitophorous vacuoles exhibited ferritin particles while the colloidal gold particles were observed in cytoplasmic vesicles. These observations, in association with studies previously reported, suggest that the state of the parasite surface determines the mechanism of parasite entry into the macrophage, the composition of the membrane lining the parasitophorous vacuole and the ability of lysosomes to fuse with the vacuoles.  相似文献   

6.
We compared the receptor-mediated endocytosis for galactose and mannose exposing ligands in primary cultures of hepatocytes from newborn and adult rats. The endocytic pathway was revealed ultrastructurally using colloidal gold particles coupled to lactosylated bovine serum albumin and invertase. The binding activity on the cell surfaces is observed by keeping the cells at 4 degrees C. For both ligands used, the binding capacity for hepatocytes from adult rats was greater than for neonatal cultured cells. Increasing the temperature to 37 degrees C, we observed that the protein-gold complexes entered the intracellular endocytic organelles. Within 5-15 min, the marker was confined in vesicles close to the cell surface and in the endosome, while after 60 min, the marker is found in lysosome-like compartments. We found that the process of endocytosis is similar for galactose and mannose exposing ligands. The organelles involved in the process of endocytosis in newborn cultured hepatocytes are not different in shape from those of cultured cells of adult rats, but the process of internalization is slower.  相似文献   

7.
The rate of movement of different receptors and ligands through the intracellular endocytic apparatus was studied in alveolar macrophages. Cells were exposed to iodinated alpha-macroglobulin-protease complexes, mannose terminal glycoproteins, diferric transferrin, and maleylated proteins. By use of the diaminobenzidine density shift procedure, we demonstrated that these ligands were internalized into the same endocytic vesicle. We then compared the rates of transfer to the lysosome or recycling to the cell surface of different ligands/receptors contained in the same endosome. We found that although the rate constant for degradation was ligand specific, the lag time prior to the initiation of degradation was the same for all three ligands. We also found that molecules taken up nonspecifically by fluid-phase pinocytosis had the same lag time prior to degradation as ligands internalized via receptor-mediated endocytosis. These data suggest that different molecules within the same endocytic compartment are transferred to the lysosome (or degradative compartment) at the same rate. We measured the rate of return of receptors to the cell surface by either inactivating surface receptors by protease treatment at 0 degrees C, or by incubating cells with saturating amounts of nonradioactive ligand at 37 degrees C. We then measured the rate of appearance of "new" receptors on the cell surface. Using these approaches, we found that three different receptors were transferred from internal pools to the cell surface at the same rate. The rate of transfer was independent of whether receptors were initially occupied or unoccupied. Our observations indicate that receptor/ligands, once inside alveolar macrophages, are transported by vesicles which transfer their contents as a cohort from one compartment to another. The rate of movement of these receptors is determined by the movement of vesicles and is independent of their content.  相似文献   

8.
Rapid acidification of endocytic vesicles containing alpha 2-macroglobulin   总被引:123,自引:0,他引:123  
B Tycko  F R Maxfield 《Cell》1982,28(3):643-651
We have used fluorescein-labeled alpha 2-macroglobulin (F-alpha 2M) to measure pH changes in the microenvironment of internalized ligands following receptor-mediated endocytosis. Fluorescence intensities of single BALB/c 3T3 mouse fibroblasts were measured by using a microscope spectrofluorometer with narrow bandpass excitation filters. The pH was determined from the ratio of fluorescein fluorescence intensities with 450 nm and 490 nm excitation. A standard pH curve was obtained by incubating cells with F-alpha 2M for 30 min at 37 degrees C followed by fixation and incubation in buffers of varying pH. To measure the pH of endocytic vesicles, cells were incubated with F-alpha 2M for 15 min at 37 degrees C. Fluorescence intensities were measured on living cells within 5 min of rinsing. Under these conditions, the pH of the F-alpha 2M microenvironment was 5.0 +/- 0.2. Using colloidal gold-alpha 2M for electron microscopic localizations we have verified that, under these conditions, alpha 2M is predominantly in uncoated vesicles that are negative for acid phosphatase activity. With further incubation for 1/2 hr, we obtained a pH of 5.0 +/- 0.2 for the F-alpha 2M. Using fluorescein dextran, we obtained a lysosomal pH of 4.6 +/- 0.2. These results indicate that endocytic vesicles become acidic prior to fusion with lysosomes.  相似文献   

9.
Previously we reported that internalized ligand-receptor complexes are transported within the alveolar macrophage at a rate that is independent of the ligand and/or receptor but is dependent on the endocytic apparatus (Ward, D. M., R. S. Ajioka, and J. Kaplan. 1989. J. Biol. Chem. 264:8164-8170). To probe the mechanism of intracellular vesicle transport, we examined the ability of vesicles internalized at different times to fuse. The mixing of ligands internalized at different times was studied using the 3,3'-diaminobenzidine/horseradish peroxidase density shift technique. The ability of internalized vesicles to fuse was dependent upon their location in the endocytic pathway. When ligands were administered as tandem pulses a significant amount of mixing (20-40%) of vesicular contents was observed. The pattern of mixing was independent of the ligands employed (transferrin, mannosylated BSA, or alpha macroglobulin), the order of ligand addition, and temperature (37 degrees C or 28 degrees C). Fusion was restricted to a brief period immediately after internalization. The amount of fusion in early endosomes did not increase when cells, given tandem pulses, were chased such that the ligands further traversed the early endocytic pathway. Little fusion, also, was seen when a chase was interposed between the two ligand pulses. The temporal segregation of vesicle contents seen in early endosomes was lost within late endosomes. Extensive mixing of vesicle contents was observed in the later portion of the endocytic pathway. This portion of the pathway is defined by the absence of internalized transferrin and is composed of ligands en route to lysosomes. Incubation of cells in iso-osmotic medium in which Na+ was replaced by K+ inhibited movement of internalized ligands to the lysosome, resulting in ligand accumulation within the late endocytic pathway. The accumulation of ligand was correlated with extensive mixing of sequentially internalized ligands. Although significant amounts of ligand degradation were observed, this compartment was devoid of conventional lysosomal markers such as acid glycosidases. These results indicate changing patterns of vesicle fusion within the endocytic pathway, with a complete loss of temporal ligand segregation in a prelysosomal compartment.  相似文献   

10.
We have previously shown that multiple complement (C) channels are required for lysis of a nucleated cell in contrast to the single channel requirement for erythrocytes. To further investigate this multichannel requirement for nucleated cells, we examined the stability of terminal C complexes in the plasma membrane of Ehrlich ascites tumor cells. Ehrlich cells bearing C5b-7 or C5b-8 with or without C9 were incubated at 37 degrees C or 0 degree C for various time intervals before converting the remaining complexes to lytic C5b-9 channels. C5b-7, C5b-8, and C5b-8 in the presence of a limited number of C5b-9 complexes disappeared functionally from the plasma membrane at 37 degrees C, with initial half-lives of 31, 20, and 10 min, respectively. Disappearance of these complexes did not occur at 0 degree C, nor did disappearance occur at 37 degrees C when formed on sheep erythrocytes. The fate of C5b-8 complexes on the surface of Ehrlich cells was traced with colloidal gold particles bound to C5 determinants on C5b-8 with the use of immunoelectron microscopy. Colloidal gold could be seen on the cell surface after specific binding to cells carrying C5b-8 sites at 0 degree C. After incubating these cells at 37 degrees C, gold particles were internalized into the cell continuously via endocytic vesicles. It is postulated that terminal C complexes may stimulate or accelerate the removal of these complexes from the cell surface.  相似文献   

11.
Receptor-mediated endocytosis involves the transport of receptor-ligand complexes from the cell surface to an intracellular endocytic compartment. This study shows that plasma membrane-derived vesicles containing receptor-bound ligands (e.g. aggregated anti-dinitrophenol (DNP) IgG bound to Fc receptors) fuse with early endosomes containing DNP-beta-glucuronidase in a cell-free system. Plasma membrane vesicles were generated by homogenization of cells that had been allowed to bind ligands at 4 degrees C. Fusion between vesicles containing the two probes was assessed by (i) the formation of anti-DNP IgG-DNP-beta-glucuronidase complexes and (ii) the colocalization within closed vesicles of two different sizes of colloidal gold coated with ligands. Fusion required ATP, cytosol, and KCl. The requirements were similar to those described for endosome-endosome fusion in in vitro systems. Mild trypsinization of vesicles prior to their addition to the assay inhibited fusion. When DNP-beta-glucuronidase was chased into more mature endocytic compartments, fusion was not observed. The results indicate that cell surface regions involved in receptor-mediated endocytosis are capable of fusing to early endosomes. This fusion event may constitute the first step in the transport of ligands to an intracellular endocytic compartment.  相似文献   

12.
The endocytosis pathways of particles with terminal beta-D-galactosyl groups were studied in isolated rat Kupffer cells by electron microscopy. Colloidal gold particles of sizes 5, 17 and 50 nm were coated with asialofetuin (ASF) and isolated liver macrophages were allowed to bind (at 4 degrees C) or take up (at 37 degrees C) these ligands. Particles of all three sizes were bound via the galactose-particle receptor as shown by carbohydrate inhibition experiments and were ingested effectively. But, whereas ASF-gold particles of sizes 5 and 17 nm are taken up via the coated pit/coated vesicle pathway, the 50 nm particles are not. These enter the cell via non-coated endocytic vacuoles. All three particle sizes are transported to the same lysosomal compartment. These observations demonstrate that at least in macrophages one receptor is capable to mediate endocytosis via two different pathways depending on ligand size and/or valency.  相似文献   

13.
We have used combinations of subcellular fractionation, specific cytochemical tracers, and quantitative immunoadsorption to determine when, where, and in which intracellular structure internalized asialoglycoproteins (ASGPs) are segregated from their receptor. All membrane vesicles containing the receptor (R+ vesicles) were quantitatively immunoadsorbed from crude microsomes with Staphylococcus aureus cells and affinity-purified anti-ASGP receptor. Using this assay, we varied the time and temperature of exposure of perfused livers to 125I-asialoorosomucoid (125I-ASOR) and followed the movement of ligand from R+ to R- vesicles. After 2.5 min at 37 degrees C, 98% of the internalized ligand could be immunoadsorbed and thus was in R+ vesicles. Over the next 12 min of continuous 37 degrees C perfusion with 125I-ASOR, an increasing fraction of the ligand was not immunoadsorbed and therefore was present in R- vesicles. A maximum of 30% of the ligand could be found in R- vesicles (14-44 min). When livers were maintained at 16 degrees C, ligand was internalized but remained in R+ vesicles. Furthermore, ligand accumulating in R- vesicles at 37 degrees C remained there when livers were cooled to 16 degrees C. R- endosomes could be separated from R+ endosomes by flotation on sucrose density gradients and visualized by the presence of sequestered ASOR-horseradish peroxidase (ASOR-HRP). These structures resembled those labeled by ASOR-HRP in situ: R+ vesicles were relatively dense (1.12 g/cc), frequently tubular or spherical and small (100-nm diam), corresponding to the peripheral and internal tubular endosomes; R- structures were of lower density (1.09 g/cc), large (400-nm diam), and resembled internal multivesicular endosomes (MVEs). Endocytosed ASOR-HRP was found in both the peripheral and internal tubular endosomes in situ under conditions where 95% of the ligand was present in R+ vesicles by immunoadsorption, whereas MVEs containing ASOR-HRP were predominant in situ when ligand was found in R- vesicles and were often in continuity with the tubular internal endosomes. All of these results suggest that complete segregation of ligand and receptor occurs after arrival in the Golgi-lysosome region of the hepatocyte and that MVEs are R- and represent the final prelysosomal compartment.  相似文献   

14.
Proteins coupled to colloidal gold particles have been widely used to visualize the uptake and intracellular transport of specific ligands by receptor-mediated endocytosis. The intracellular route of lysosome-directed ligands such as asialoglycoproteins (ASGP) are apparently unaltered by conjugation to gold, but the pathway of transferrin, a ligand that normally recycles to the cell surface, was reported to be altered by conjugation to 15-20 nm gold. In this study, we sought to determine whether a smaller transferrin-gold probe would recycle, and whether it might enter the same endosomal and lysosomal compartments as does a larger, lysosome-directed ASGP gold probe by visualizing their simultaneous uptake in human hepatoma (HepG2) cells. In the same cells, endocytosis of fluid-phase protein was followed using the soluble tracer native ferritin; lysosomal compartments were identified by acid phosphatase cytochemistry; and cell surfaces were labeled with ruthenium red or cationized ferritin. During the first 10 min of uptake at 37 degrees C, specific receptor-bound ferrotransferrin (FeTf)-8 nm gold and asialoorosomucoid (ASOR)-20 nm gold were clustered together in coated pits and entered the same coated vesicles, smooth vesicles, and tubules in the peripheral cytoplasm. At later times, however, transferrin-gold did not return to the cell surface; unlike native transferrin, this gold probe accompanied ASOR-gold into multivesicular bodies (MVB). The MVBs that contained probes were at first devoid of acid phosphatase activity, but at 30 min, enzyme activity was detected in a few MVBs. Native ferritin was present, along with gold probes, in all compartments of the endocytic pathway. We conclude that the normal intracellular pathway of transferrin is altered by its association with a colloidal gold particle.  相似文献   

15.
Acidification of endocytic vesicles has been implicated as a necessary step in various processes including receptor recycling, virus penetration, and the entry of diphtheria toxin into cells. However, there have been few accurate pH measurements in morphologically and biochemically defined endocytic compartments. In this paper, we show that prelysosomal endocytic vesicles in HepG2 human hepatoma cells have an internal pH of approximately 5.4. (We previously reported that similar vesicles in mouse fibroblasts have a pH of 5.0.) The pH values were obtained from the fluorescence excitation profile after internalization of fluorescein labeled asialo-orosomucoid (ASOR). To make fluorescence measurements against the high autofluorescence background, we developed digital image analysis methods for estimating the pH within individual endocytic vesicles or lysosomes. Ultrastructural localization with colloidal gold ASOR demonstrated that the pH measurements were made when ligand was in tubulovesicular structures lacking acid phosphatase activity. Biochemical studies with 125I-ASOR demonstrated that acidification precedes degradation by more than 30 min at 37 degrees C. At 23 degrees C ligand degradation ceases almost entirely, but endocytic vesicle acidification and receptor recycling continue. These results demonstrate that acidification of endocytic vesicles, which causes ligand dissociation, occurs without fusion of endocytic vesicles with lysosomes. Methylamine and monensin raise the pH of endocytic vesicles and cause a ligand-independent loss of receptors. The effects on endocytic vesicle pH are rapidly reversible upon removal of the perturbant, but the effects on cell surface receptors are slowly reversible with methylamine and essentially irreversible with monensin. This suggests that monensin can block receptor recycling at a highly sensitive step beyond the acidification of endocytic vesicles. Taken together with other direct and indirect estimates of endocytic vesicle pH, these studies indicate that endocytic vesicles in many cell types rapidly acidify below pH 5.5, a pH sufficiently acidic to allow receptor-ligand dissociation and the penetration of some toxin chains and enveloped virus nucleocapsids into the cytoplasm.  相似文献   

16.
We examined the receptor-mediated endocytosis of asialoglycoproteins in thick sections of cultured hepatocytes of newborn rats by high voltage electron microscope. The organelles involved in endocytosis are revealed ultrastructurally using colloidal gold particles coupled to lactosylated bovine serum albumin. Keeping the cells at 4 degrees C the marker binds to the cell surface showing microvilli, and is not internalized. Increasing the temperature to 37 degrees C, we observed that within 5-15 min. the marker enters the intracellular endocytic organelles close to the cell surface. After 60 min. the marker is found in the larger and deeper endocytic organelles and in large lisosome-like vesicles. We find that the process of endocytosis in newborn cultured hepatocytes is similar to that found in cultured cells of adult rats, but the process of internalization is slower.  相似文献   

17.
125I-labeled and ferritin-labeled low density lipoprotein (LDL) were used as visual probes to study the surface distribution of LDL receptors and to examine the mechanism of the endocytosis of this lipoprotein in cultured human fibrobasts. Light microscopic autoradiograms of whole cells incubated with 125I-LDL at 4 degrees C showed that LDL receptors were widely but unevenly distributed over the cell surface. With the electron microscope, we determined that 60-70% of the ferritin-labeled LDL that bound to cells at 4 degrees C was localized over short coated segments of the plasma membrane that accounted for no more than 2% of the total surface area. To study the internalization process, cells were first allowed to bind ferritin-labeled LDL at 4 degrees C and were then warmed to 37 degrees C. Within 10 min, nearly all the surface-bound LDL-ferritin was incorporated into coated endocytic vesicles that were formed by the invagination and pinching-off of the coated membrane regions that contained the receptor-bound LDL. With increasing time at 37 degrees C, these coated vesicles were observed sequentially to migrate through the cytoplasm (1 min), to lose their cytoplasmic coat (2 min), and to fuse with either primary or secondary lysosomes (6 min). The current data indicate that the coated regions of plasma membrane are specialized structures of rapid turnover that function to carry receptor-bound LDL, and perhaps other receptor-bound molecules, into the cell.  相似文献   

18.
Low density lipoproteins (LDL) were conjugated to colloidal gold for investigation of the ultrastructural aspects of binding and receptor-mediated internalization of LDL by cultured endothelial cells from the human umbilical artery and vein. The number of LDL receptors was increased by preincubation in lipoprotein-depleted serum. When the cells were incubated with LDL-gold particles for 2 h at 4 degrees C, the complexes were found in coated pits as well as in clusters attached to the plasma membrane. Small vesicles containing a few LDL-gold complexes appeared in the cytoplasm close to the plasma membrane when the cells were incubated with the conjugate for 5 min at 37 degrees C. After 15 min at 37 degrees C, larger vesicles with a pale matrix and membrane-orientated LDL-gold complexes were seen. After incubation for 30 min at 37 degrees C, colloidal gold particles were present in dense bodies. Quantification of the binding of LDL-gold complexes to the plasma membrane at 4 degrees C showed no differences between arterial and venous endothelial cells.  相似文献   

19.
We have raised specific polyclonal immunoglobulin G (IgG) against a major lysosomal membrane sialoglycoprotein (LGP107) taken from rat liver and have prepared a conjugate of its Fab' fragment with horseradish peroxidase (HRP-anti LGP107 Fab') as a probe for the subcellular antigen. Electron immunocytochemistry in primary cultured rat hepatocytes showed that LGP107 resided primarily within lysosomes and was associated with luminal amorphous materials as well as limiting membranes. In addition, LGP107 was shown to be substantially distributed throughout the endocytic vacuolar system. The glycoprotein was found clustered in coated pits at the cell surface and localized along the surrounding membranes in endocytic vesicles. When cultured cells were exposed to HRP-anti LGP107 Fab', the antibody which was bound to its antigen within the coated pits was internalized via a system of endocytic vesicles and transported to lysosomes. During 20 min of incubation at 37 degrees C, the HRP tracer appeared at an early stage in small vesicles and moved progressively to larger vesicles, including multivesicular bodies. After 1 h, the tracer could be clearly seen in lysosomes heterogeneous in shape and size. The existence of LGP107 in endocytic compartments and the uptake of anti LGP107 antibody by hepatocytes were not blocked by prior treatment of the cells with cycloheximide and excess amounts of anti LGP107 IgG. These data suggest that LGP107 circulates between the cell surface and lysosomes through the endocytic membrane traffic in hepatocytes.  相似文献   

20.
The presence of acid proteases in the endosomal compartment of macrophages has been recently demonstrated (Diment, S., Leech, M. S., and Stahl, P. D. (1988) J. Biol. Chem. 263, 6901-6907). This proteolytic activity allows the early degradation of ligands internalized by receptor-mediated endocytosis. To study the early steps that initiate the proteolytic processing of ligands, immune complexes formed with anti-dinitrophenol monoclonal IgG and radiolabeled dinitrophenol-derivatized bovine serum albumin were bound at 4 degrees C to Fc receptors of J774 macrophages. Cells were allowed to internalize immune complexes bound to the plasma membrane for different periods of time at 37 degrees C. Vesicle preparations generated from these cells were incubated in vitro at acidic pH to allow the hydrolysis of ligands located in protease-positive compartments. Ligand hydrolysis was observed after about 5 min of internalization, suggesting that at earlier times immune complexes were located in protease-free vesicles. Upon incubation of cell lysates under conditions that support in vitro endosome-endosome fusion, early protease-free endosomes containing ligand acquire proteolytic activity. Reconstitution of fusion-dependent proteolysis required energy, ions, membrane-associated factors, and cytosol. Cytosol was inactivated by incubation with N-ethylmaleimide. The proteolytic compartment formed upon in vitro incubation colocalized with endosomes in the light region of a Percoll gradient. Reconstitution was also achieved using an endosomal preparation separated from lysosomes in a Percoll gradient. Our results indicate that a fusion step between newly formed endocytic vesicles and a light density, protease-positive compartment triggers the proteolytic processing of ligands internalized by receptor-mediated endocytosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号