首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The reason for the presence of hemoglobin-like molecules in insects, such as Drosophila melanogaster, that live in fully aerobic environments has yet to be determined. Heme endogenous hexacoordination (where HisE7 and HisF8 axial ligands to the heme Fe atom are both provided by the protein) is a recently discovered mechanism proposed to modulate O(2) affinity in hemoglobins from different species. Previous results have shown that D. melanogaster hemoglobin 1 (product of the glob1 gene) displays heme endogenous hexacoordination in both the ferrous and ferric states. Here we present kinetic data characterizing the exogenous cyanide ligand binding process, and the three-dimensional structure (at 1.4 A resolution) of the ensuing cyano-met D. melanogaster hemoglobin. Comparison with the crystal structure of the endogenously hexacoordinated D. melanogaster hemoglobin shows that the transition to the cyano-met form is supported by conformational readjustment in the CD-D-E region of the protein, which removes HisE7 from the heme. The structural and functional features of D. melanogaster hemoglobin are examined in light of previous results achieved for human and mouse neuroglobins and for human cytoglobin, which display heme endogenous hexacoordination. The study shows that, despite the rather constant value for cyanide association rate constants for the ferric hemoproteins, different distal site conformational readjustments and/or heme sliding mechanisms are displayed by the known hexacoordinate hemoglobins as a result of exogenous ligand binding.  相似文献   

2.
Plants and fungi often produce toxic secondary metabolites that limit their consumption, but herbivores and fungivores that evolve resistance gain access to these resources and can also gain protection against nonresistant predators and parasites. Given that Drosophila melanogaster fruit fly larvae consume yeasts growing on rotting fruit and have evolved resistance to fermentation products, we decided to test whether alcohol protects flies from one of their common natural parasites, endoparasitoid wasps. Here, we show that exposure to ethanol reduces wasp oviposition into fruit fly larvae. Furthermore, if infected, ethanol consumption by fruit fly larvae causes increased death of wasp larvae growing in the hemocoel and increased fly survival without need of the stereotypical antiwasp immune response. This multifaceted protection afforded to fly larvae by ethanol is significantly more effective against a generalist wasp than a wasp that specializes on D. melanogaster. Finally, fly larvae seek out ethanol-containing food when infected, indicating that they use alcohol as an antiwasp medicine. Although the high resistance of D. melanogaster may make it uniquely suited to exploit curative properties of alcohol, it is possible that alcohol consumption may have similar protective effects in other organisms.  相似文献   

3.
Kacsoh BZ  Schlenke TA 《PloS one》2012,7(4):e34721
Among the most common parasites of Drosophila in nature are parasitoid wasps, which lay their eggs in fly larvae and pupae. D. melanogaster larvae can mount a cellular immune response against wasp eggs, but female wasps inject venom along with their eggs to block this immune response. Genetic variation in flies for immune resistance against wasps and genetic variation in wasps for virulence against flies largely determines the outcome of any fly-wasp interaction. Interestingly, up to 90% of the variation in fly resistance against wasp parasitism has been linked to a very simple mechanism: flies with increased constitutive blood cell (hemocyte) production are more resistant. However, this relationship has not been tested for Drosophila hosts outside of the melanogaster subgroup, nor has it been tested across a diversity of parasitoid wasp species and strains. We compared hemocyte levels in two fly species from different subgroups, D. melanogaster and D. suzukii, and found that D. suzukii constitutively produces up to five times more hemocytes than D. melanogaster. Using a panel of 24 parasitoid wasp strains representing fifteen species, four families, and multiple virulence strategies, we found that D. suzukii was significantly more resistant to wasp parasitism than D. melanogaster. Thus, our data suggest that the relationship between hemocyte production and wasp resistance is general. However, at least one sympatric wasp species was a highly successful infector of D. suzukii, suggesting specialists can overcome the general resistance afforded to hosts by excessive hemocyte production. Given that D. suzukii is an emerging agricultural pest, identification of the few parasitoid wasps that successfully infect D. suzukii may have value for biocontrol.  相似文献   

4.
Monomeric hemoglobin from the trematode Paramphistomum epiclitum displays very high oxygen affinity (P(50)<0.001 mm Hg) and an unusual heme distal site containing tyrosyl residues at the B10 and E7 positions. The crystal structure of aquo-met P. epiclitum hemoglobin, solved at 1.17 A resolution via multiwavelength anomalous dispersion techniques (R-factor=0.121), shows that the heme distal site pocket residue TyrB10 is engaged in hydrogen bonding to the iron-bound ligand. By contrast, residue TyrE7 is unexpectedly locked next to the CD globin region, in a conformation unsuitable for heme-bound ligand stabilisation. Such structural organization of the E7 distal residue differs strikingly from that observed in the nematode Ascaris suum hemoglobin (bearing TyrB10 and GlnE7 residues), which also displays very high oxygen affinity. The oxygenation and carbonylation parameters of wild-type P. epiclitum Hb as well as of single- and double-site mutants, with residue substitutions at positions B10, E7 and E11, have been determined and are discussed here in the light of the protein atomic resolution crystal structure.  相似文献   

5.
A novel truncated hemoglobin has been identified in the thermophilic bacterium Geobacillus stearothermophilus (Gs-trHb). The protein has been expressed in Escherichia coli, the 3D crystal structure (at 1.5 Angstroms resolution) and the ligand binding properties have been determined. The distal heme pocket displays an array of hydrogen bonding donors to the iron-bound ligands, including Tyr-B10 on one side of the heme pocket and Trp-G8 indole nitrogen on the opposite side. At variance with the highly similar Bacillus subtilis hemoglobin, Gs-trHb is dimeric both in the crystal and in solution and displays several unique structural properties. In the crystal cell, the iron-bound ligand is not homogeneously distributed within each distal site such that oxygen and an acetate anion can be resolved with relative occupancies of 50% each. Accordingly, equilibrium titrations of the oxygenated derivative in solution with acetate anion yield a partially saturated ferric acetate adduct. Moreover, the asymmetric unit contains two subunits and sedimentation velocity ultracentrifugation data confirm that the protein is dimeric.  相似文献   

6.
The protein HasA from the Gram negative bacteria Serratia marcescens is the first hemophore to be described at the molecular level. It participates to the shuttling of heme from hemoglobin to the outer membrane receptor HasR, which in turn releases it into the bacterium. HasR alone is also able to take up heme from hemoglobin but synergy with HasA increases the efficiency of the system by a factor of about 100. This iron acquisition system allows the bacteria to survive with hemoglobin as the sole iron source. Here we report the structures of a new crystal form of HasA diffracting up to 1.77A resolution as well as the refined structure of the trigonal crystal form diffracting to 3.2A resolution. The crystal structure of HasA at high resolution shows two possible orientations of the heme within the heme-binding pocket, which probably are functionally involved in the heme-iron acquisition process. The detailed analysis of the three known structures reveals the molecular basis regulating the relative affinity of the heme/hemophore complex.  相似文献   

7.
Cytoglobin is a recently discovered hemeprotein belonging to the globin superfamily together with hemoglobin, myoglobin and neuroglobin. Although distributed in almost all human tissues, cytoglobin has not been ascribed a specific function. Human cytoglobin is composed of 190 amino acid residues. Sequence alignments show that a protein core region (about 150 residues) is structurally related to hemoglobin and myoglobin, being complemented by about 20 extra residues both on the N and C termini. In the absence of exogenous ligands (e.g. O2), the cytoglobin distal HisE7 residue is coordinated to the heme Fe atom, thus decreasing the ligand affinity. The crystal structure of human cytoglobin (2.1 A resolution, 21.3% R-factor) highlights a three-over-three alpha-helical globin fold, covering residues 18-171; the 1-17 N-terminal, and the 172-190 C-terminal residue segments are disordered in both molecules of the crystal asymmetric unit. Heme hexa-coordination is evident in one of the two cytoglobin chains, whereas alternate conformation for the heme distal region, achieving partial heme penta-coordination, is observed in the other. Human cytoglobin displays a large apolar protein matrix cavity, next to the heme, not related to the myoglobin cavities recognized as temporary ligand docking stations. The cavity, which may provide a heme ligand diffusion pathway, is connected to the external space through a narrow tunnel nestled between the globin G and H helices.  相似文献   

8.
A very short hemoglobin (CerHb; 109 amino acids) binds O(2) cooperatively in the nerve tissue of the nemertean worm Cerebratulus lacteus to sustain neural activity during anoxia. Sequence analysis suggests that CerHb tertiary structure may be unique among the known globin fold evolutionary variants. The X-ray structure of oxygenated CerHb (R factor 15.3%, at 1.5 A resolution) displays deletion of the globin N-terminal A helix, an extended GH region, a very short H helix, and heme solvent shielding based on specific aromatic residues. The heme-bound O(2) is stabilized by hydrogen bonds to the distal TyrB10-GlnE7 pair. Ligand access to heme may take place through a wide protein matrix tunnel connecting the distal site to a surface cleft located between the E and H helices.  相似文献   

9.
Milani M  Pesce A  Ouellet H  Guertin M  Bolognesi M 《IUBMB life》2003,55(10-11):623-627
Truncated hemoglobins (trHbs) build a separate subfamily within the hemoglobin superfamily; they are scarcely related by sequence similarity to (non-)vertebrate hemoglobins, displaying amino acid sequences in the 115-130 residue range. The trHb tertiary structure is based on a 2-on-2 alpha-helical sandwich, which hosts a unique hydrophobic cavity/tunnel system, traversing the protein matrix, from the molecular surface to the heme distal site. Such a protein matrix system may provide a path for diffusion of ligands to the heme. In Mycobacterium tuberculosis trHbN the heme-bound oxygen molecule is part of an extended hydrogen bond network including the heme distal residues TyrB10 and GlnE11. In vitro experiments have shown that M. tuberculosis trHbN supports efficiently nitric oxide dioxygenation, yielding nitrate. Such a reaction would provide a defense barrier against the nitrosative stress raised by host macrophages during lung infection. It is proposed that the whole protein architecture, the heme distal site hydrogen bonded network, and the unique protein matrix tunnel, are optimally designed to support the pseudo-catalytic role of trHbN in converting the reactive NO species into the harmless NO3-.  相似文献   

10.
This paper examines the effects of DNA sequence evolution on RNA secondary structures and compensatory mutations. Models of the secondary structures of Drosophila melanogaster 18S ribosomal RNA (rRNA) and of the complex between 2S, 5.8S, and 28S rRNAs have been drawn on the basis of comparative and energetic criteria. The overall AU richness of the D. melanogaster rRNAs allows the resolution of some ambiguities in the structures of both large rRNAs. Comparison of the sequence of expansion segment V2 in D. melanogaster 18S rRNA with the same region in three other Drosophila species and the tsetse fly (Glossina morsitans morsitans) allows us to distinguish between two models for the secondary structure of this region. The secondary structures of the expansion segments of D. melanogaster 28S rRNA conform to a general pattern for all eukaryotes, despite having highly divergent sequences between D. melanogaster and vertebrates. The 70 novel compensatory mutations identified in the 28S rRNA show a strong (70%) bias toward A-U base pairs, suggesting that a process of biased mutation and/or biased fixation of A and T point mutations or AT-rich slippage-generated motifs has occurred during the evolution of D. melanogaster rDNA. This process has not occurred throughout the D. melanogaster genome. The processes by which compensatory pairs of mutations are generated and spread are discussed, and a model is suggested by which a second mutation is more likely to occur in a unit with a first mutation as such a unit begins to spread through the family and concomitantly through the population. Alternatively, mechanisms of proofreading in stem-loop structures at the DNA level, or between RNA and DNA, might be involved. The apparent tolerance of noncompensatory mutations in some stems which are otherwise strongly supported by comparative criteria within D. melanogaster 28S rRNA must be borne in mind when compensatory mutations are used as a criterion in secondary-structure modeling. Noncompensatory mutation may extend to the production of unstable structures where a stem is stabilized by RNA- protein or additional RNA-RNA interactions in the mature ribosome. Of motifs suggested to be involved in rRNA processing, one (CGAAAG) is strongly overrepresented in the 28S rRNA sequence. The data are discussed both in the context of the forces involved with the evolution of multigene families and in the context of molecular coevolution in the rDNA family in particular.   相似文献   

11.
Caenorhabditis elegans and Drosophila melanogaster are relevant models for studying the roles of glycosaminoglycans (GAG) during the development of multicellular organisms. The genome projects of these organisms have revealed the existence of multiple genes related to GAG-synthesizing enzymes. Although the putative genes encoding the enzymes that synthesize the GAG-protein linkage region have also been identified, there is no direct evidence that the GAG chains bind covalently to core proteins. This study aimed to clarify whether GAG chains in these organisms are linked to core proteins through the conventional linkage region tetrasaccharide sequence found in vertebrates and whether modifications by phosphorylation and sulfation reported for vertebrates are present also in invertebrates. The linkage region oligosaccharides were isolated from C. elegans chondroitin in addition to D. melanogaster heparan and chondroitin sulfate after digestion with the respective bacterial eliminases and were then derivatized with a fluorophore 2-aminobenzamide. Their structures were characterized by gel filtration and anion-exchange high performance liquid chromatography in conjunction with enzymatic digestion and matrix-assisted laser desorption ionization time-of-flight spectrometry, which demonstrated a uniform linkage tetrasaccharide structure of -GlcUA-Gal-Gal-Xyl- or -GlcUA-Gal-Gal-Xyl(2-O-phosphate)- for C. elegans chondroitin and D. melanogaster CS, respectively. In contrast, the unmodified and phosphorylated counterparts were demonstrated in heparan sulfate of adult flies at a molar ratio of 73:27, and in that of the immortalized D. melanogaster S2 cell line at a molar ratio of 7:93, which suggests that the linkage region in the fruit fly first becomes phosphorylated uniformly on the Xyl residue and then dephosphorylated. It has been established here that GAG chains in both C. elegans and D. melanogaster are synthesized on the core protein through the ubiquitous linkage region tetrasaccharide sequence, suggesting that indispensable functions of the linkage region in the GAG synthesis have been well conserved during evolution.  相似文献   

12.
13.
A native globin from the dimeric hemoglobin, hemoglobin I, of the mollusc Scapharca inaequivalvis has been obtained with the acid-acetone method. The globin has a lower sedimentation coefficient than the native protein at neutral pH; its reconstitution product with natural heme has the same physicochemical and functional properties as the native protein. proto- and meso-cobalt hemoglobin I have been prepared and characterized. proto-Cobalt hemoglobin I binds oxygen reversibly with a lower affinity and a lower cooperativity than native hemoglobin I; thus, the changes in the functional properties brought about by substitution of iron with cobalt are similar to those observed in human hemoglobin A. The EPR spectra of deoxy-proto-cobalt hemoglobin I and of the photolysis product of oxy-meso-cobalt hemoglobin I indicate that two histidine residues are the apical heme ligands. The broad signal at g = 2.38 in deoxy-proto-cobalt hemoglobin I points to a constrained structure of the heme site in this derivative which results from a distorted coordination of the hindered proximal histidine. A similar structure has been proposed previously for the alpha chains in deoxy-cobalt hemoglobin A.  相似文献   

14.
The x-ray crystal structure of Synechocystis hemoglobin has been solved to a resolution of 1.8 A. The conformation of this structure is surprisingly different from that of the previously reported solution structure, probably due in part to a covalent linkage between the heme 2-vinyl and His117 that is present in the crystal structure but not in the structure solved by NMR. Synechocystis hemoglobin is a hexacoordinate hemoglobin in which the heme iron is coordinated by both the proximal and distal histidines. It is also a member of the "truncated hemoglobin" family that is much shorter in primary structure than vertebrate and plant hemoglobins. In contrast to other truncated hemoglobins, the crystal structure of Synechocystis hemoglobin displays no "ligand tunnel" and shows that several important amino acid side chains extrude into the solvent instead of residing inside the heme pocket. The stereochemistry of hexacoordination is compared with other hexacoordinate hemoglobins and cytochromes in an effort to illuminate factors contributing to ligand affinity in hexacoordinate hemoglobins.  相似文献   

15.
The hemoglobin gene 1 (dmeglob1) of the fruit fly Drosophila melanogaster is expressed in the tracheal system and fat body, and has been implicated in hypoxia resistance. Here we investigate the expression levels of dmeglob1 and lactate dehydrogenase (a positive control) in embryos, third instar larvae and adult flies under various regimes of hypoxia and hyperoxia. As expected, mRNA levels of lactate dehydrogenase increased under hypoxia. We show that expression levels of dmeglob1 are decreased under both short- and long-term hypoxia, compared with the normoxic (21% O2) control. By contrast, a hypoxia/reoxygenation regime applied to third instar larvae elevated the level of dmeglob1 mRNA. An excess of O2 (hyperoxia) also triggered an increase in dmeglob1 mRNA. The data suggest that Drosophila hemoglobin may be unlikely to function merely as a myoglobin-like O2 storage protein. Rather, dmeglob1 may protect the fly from an excess of O2, either by buffering the flux of O2 from the tracheoles to the cells or by degrading noxious reactive oxygen species.  相似文献   

16.
Primary neural cultures from the fruit fly, Drosophila melanogaster, enable a high-resolution glance into cellular processes and neuronal interaction. The development of the culture, along with its vitality and functionality, can be continuously monitored, and the abundance of available tools for D. melanogaster research can greatly assist in characterizing different aspects of the culture. The fly primary neural culture preparation thus offers a promising platform for studying a variety of processes relating to nervous system development, activity and pathology. Our data reveal that neural cultures derived from the CNS of third-instar D. melanogaster larvae undergo an organization process that is specific and consistent throughout different cultures, and culminates in the creation of an elaborate neural network. We demonstrate that this process is accompanied by detectable changes in the protein expression profile of the culture, indicating the involvement of multi-protein processes specific to each stage of the network's development. As a further proof of concept, we demonstrate differential expression of a particular protein family, the gap-junction constructing innexin protein family, throughout the network's life.  相似文献   

17.
Crystal structure and electron transfer properties of cytochrome c3   总被引:3,自引:0,他引:3  
The crystal structure of cytochrome c3 from the sulfate-reducing bacteria Desulfovibrio desulfuricans, Norway strain, has been determined through the fitting of the recently completed primary structure to a 2.5 A resolution electron density map. The phase calculations were based on three mercurial derivatives; anomalous scattering data were used to refine the four heme iron positions. A preliminary refinement of the molecular model has led to a conventional crystallographic R factor of 34%. Cytochrome c3 is folded in two structural domains with one heme in each, the two other heme moieties lying in a large groove dividing the molecule. The core of the protein is the compact four-heme cluster which presents a relatively high degree of solvent exposure. The structural pattern of redox centers suggests that electron transfer might occur through direct contacts between some of the heme groups, via the overlapping system of pi oribitals or via intervening amino acid side chains or both.  相似文献   

18.
The active site of heme catalases is buried deep inside a structurally highly conserved homotetramer. Channels leading to the active site have been identified as potential routes for substrate flow and product release, although evidence in support of this model is limited. To investigate further the role of protein structure and molecular channels in catalysis, the crystal structures of four active site variants of catalase HPII from Escherichia coli (His128Ala, His128Asn, Asn201Ala, and Asn201His) have been determined at approximately 2.0-A resolution. The solvent organization shows major rearrangements with respect to native HPII, not only in the vicinity of the replaced residues but also in the main molecular channel leading to the heme distal pocket. In the two inactive His128 variants, continuous chains of hydrogen bonded water molecules extend from the molecular surface to the heme distal pocket filling the main channel. The differences in continuity of solvent molecules between the native and variant structures illustrate how sensitive the solvent matrix is to subtle changes in structure. It is hypothesized that the slightly larger H(2)O(2) passing through the channel of the native enzyme will promote the formation of a continuous chain of solvent and peroxide. The structure of the His128Asn variant complexed with hydrogen peroxide has also been determined at 2.3-A resolution, revealing the existence of hydrogen peroxide binding sites both in the heme distal pocket and in the main channel. Unexpectedly, the largest changes in protein structure resulting from peroxide binding are clustered on the heme proximal side and mainly involve residues in only two subunits, leading to a departure from the 222-point group symmetry of the native enzyme. An active role for channels in the selective flow of substrates through the catalase molecule is proposed as an integral feature of the catalytic mechanism. The Asn201His variant of HPII was found to contain unoxidized heme b in combination with the proximal side His-Tyr bond suggesting that the mechanistic pathways of the two reactions can be uncoupled.  相似文献   

19.
Free iron availability is strongly limited in vertebrate hosts, making the iron acquisition by siderophores inappropriate. Pathogenic bacteria have developed various ways to use the host's iron from iron-containing proteins. Serratia marcescens can use the iron from hemoglobin through the secretion of a hemophore called HasA, which takes up the heme from hemoglobin and shuttles it to the receptor HasR, which in turn, releases heme into the bacterium. We report here the first crystal structure of such a hemophore, bound to a heme group at two different pH values and at a resolution of 1.9 A. The structure reveals a new original fold and suggests a hypothetical mechanism for both heme uptake and release.  相似文献   

20.
The coelomic cells of the common marine bloodworm Glycera dibranchiata contain several hemoglobin monomers and polydisperse polymers. We present the refined structure of one of the Glycera monomers at 1.5 A resolution. The molecular model for protein and ordered solvent for the deoxy form of the Glycera monomer has been refined to a crystallographic R-factor of 12.7% against an X-ray diffraction dataset at 1.5 A resolution. The positions of 1095 protein atoms have been determined with a maximum root-mean-square (r.m.s.) error of 0.13 A, and the r.m.s. deviation from ideal bond lengths is 0.015 A and from ideal bond angles is 1.0 degree. The r.m.s. deviation of planar groups from their least-squares planes is 0.007 A, and the r.m.s. deviation for torsion angles is 1.2 degrees for peptide groups and 16.8 degrees for side-chains. A total of 153 water molecules has been located, and they have been refined to a final average occupancy of 0.80. Multiple conformations have been found for five side-chains, and a change has been suggested for the sequence at five residues. The heme group is present in the "reverse" orientation that differs only in the positions of the vinyl beta-carbons from the "normal" orientation. The doming of the heme towards the proximal side, and the bond distances and angles of the heme and proximal histidine are typical of most deoxy globin structures. The substitution of leucine for the distal histidine residue (E7) creates an unusually hydrophobic heme pocket.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号