首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We develop an approach for microarray differential expression analysis, i.e. identifying genes whose expression levels differ between two or more groups. Current approaches to inference rely either on full parametric assumptions or on permutation-based techniques for sampling under the null distribution. In some situations, however, a full parametric model cannot be justified, or the sample size per group is too small for permutation methods to be valid. We propose a semi-parametric framework based on partial mixture estimation which only requires a parametric assumption for the null (equally expressed) distribution and can handle small sample sizes where permutation methods break down. We develop two novel improvements of Scott's minimum integrated square error criterion for partial mixture estimation [Scott, 2004a,b]. As a side benefit, we obtain interpretable and closed-form estimates for the proportion of EE genes. Pseudo-Bayesian and frequentist procedures for controlling the false discovery rate are given. Results from simulations and real datasets indicate that our approach can provide substantial advantages for small sample sizes over the SAM method of Tusher et al. [2001], the empirical Bayes procedure of Efron and Tibshirani [2002], the mixture of normals of Pan et al. [2003] and a t-test with p-value adjustment [Dudoit et al., 2003] to control the FDR [Benjamini and Hochberg, 1995].  相似文献   

2.
MOTIVATION: Recent attempts to account for multiple testing in the analysis of microarray data have focused on controlling the false discovery rate (FDR), which is defined as the expected percentage of the number of false positive genes among the claimed significant genes. As a consequence, the accuracy of the FDR estimators will be important for correctly controlling FDR. Xie et al. found that the standard permutation method of estimating FDR is biased and proposed to delete the predicted differentially expressed (DE) genes in the estimation of FDR for one-sample comparison. However, we notice that the formula of the FDR used in their paper is incorrect. This makes the comparison results reported in their paper unconvincing. Other problems with their method include the biased estimation of FDR caused by over- or under-deletion of DE genes in the estimation of FDR and by the implicit use of an unreasonable estimator of the true proportion of equivalently expressed (EE) genes. Due to the great importance of accurate FDR estimation in microarray data analysis, it is necessary to point out such problems and propose improved methods. RESULTS: Our results confirm that the standard permutation method overestimates the FDR. With the correct FDR formula, we show the method of Xie et al. always gives biased estimation of FDR: it overestimates when the number of claimed significant genes is small, and underestimates when the number of claimed significant genes is large. To overcome these problems, we propose two modifications. The simulation results show that our estimator gives more accurate estimation.  相似文献   

3.
Although many statistical methods have been proposed for identifying differentially expressed genes, the optimal approach has still not been resolved. Therefore, it is necessary to develop more efficient methods of finding differentially expressed genes while accounting for noise and false discovery rate (FDR). We propose a method based on multi-resolution wavelet transformation analysis combined with SAM for identifying differentially expressed genes by adjusting the Δ and computing the FDR. This method was applied to a microarray expression dataset from adenoma patients and normal subjects. The number of differentially expressed genes gradually reduced with an increasing Δ value, and the FDR was reduced after wavelet transformation. At a given Δ value, the FDR was also reduced before and after wavelet transformation. In conclusion, a greater number and quality of differentially expressed genes were detected using the method when compared to non-transformed data, and the FDRs were notably more controlled and reduced.  相似文献   

4.
MOTIVATION: Statistical methods based on controlling the false discovery rate (FDR) or positive false discovery rate (pFDR) are now well established in identifying differentially expressed genes in DNA microarray. Several authors have recently raised the important issue that FDR or pFDR may give misleading inference when specific genes are of interest because they average the genes under consideration with genes that show stronger evidence for differential expression. The paper proposes a flexible and robust mixture model for estimating the local FDR which quantifies how plausible each specific gene expresses differentially. RESULTS: We develop a special mixture model tailored to multiple testing by requiring the P-value distribution for the differentially expressed genes to be stochastically smaller than the P-value distribution for the non-differentially expressed genes. A smoothing mechanism is built in. The proposed model gives robust estimation of local FDR for any reasonable underlying P-value distributions. It also provides a single framework for estimating the proportion of differentially expressed genes, pFDR, negative predictive values, sensitivity and specificity. A cervical cancer study shows that the local FDR gives more specific and relevant quantification of the evidence for differential expression that can be substantially different from pFDR. AVAILABILITY: An R function implementing the proposed model is available at http://www.geocities.com/jg_liao/software  相似文献   

5.
While meta-analysis provides a powerful tool for analyzing microarray experiments by combining data from multiple studies, it presents unique computational challenges. The Bioconductor package RankProd provides a new and intuitive tool for this purpose in detecting differentially expressed genes under two experimental conditions. The package modifies and extends the rank product method proposed by Breitling et al., [(2004) FEBS Lett., 573, 83-92] to integrate multiple microarray studies from different laboratories and/or platforms. It offers several advantages over t-test based methods and accepts pre-processed expression datasets produced from a wide variety of platforms. The significance of the detection is assessed by a non-parametric permutation test, and the associated P-value and false discovery rate (FDR) are included in the output alongside the genes that are detected by user-defined criteria. A visualization plot is provided to view actual expression levels for each gene with estimated significance measurements. AVAILABILITY: RankProd is available at Bioconductor http://www.bioconductor.org. A web-based interface will soon be available at http://cactus.salk.edu/RankProd  相似文献   

6.
Tan YD  Fornage M  Fu YX 《Genomics》2006,88(6):846-854
Microarray technology provides a powerful tool for the expression profile of thousands of genes simultaneously, which makes it possible to explore the molecular and metabolic etiology of the development of a complex disease under study. However, classical statistical methods and technologies fail to be applicable to microarray data. Therefore, it is necessary and motivating to develop powerful methods for large-scale statistical analyses. In this paper, we described a novel method, called Ranking Analysis of Microarray Data (RAM). RAM, which is a large-scale two-sample t-test method, is based on comparisons between a set of ranked T statistics and a set of ranked Z values (a set of ranked estimated null scores) yielded by a "randomly splitting" approach instead of a "permutation" approach and a two-simulation strategy for estimating the proportion of genes identified by chance, i.e., the false discovery rate (FDR). The results obtained from the simulated and observed microarray data show that RAM is more efficient in identification of genes differentially expressed and estimation of FDR under undesirable conditions such as a large fudge factor, small sample size, or mixture distribution of noises than Significance Analysis of Microarrays.  相似文献   

7.

Background  

Many procedures for finding differentially expressed genes in microarray data are based on classical or modified t-statistics. Due to multiple testing considerations, the false discovery rate (FDR) is the key tool for assessing the significance of these test statistics. Two recent papers have generalized two aspects: Storey et al. (2005) have introduced a likelihood ratio test statistic for two-sample situations that has desirable theoretical properties (optimal discovery procedure, ODP), but uses standard FDR assessment; Ploner et al. (2006) have introduced a multivariate local FDR that allows incorporation of standard error information, but uses the standard t-statistic (fdr2d). The relationship and relative performance of these methods in two-sample comparisons is currently unknown.  相似文献   

8.
DNA microarray experiments have generated large amount of gene expression measurements across different conditions. One crucial step in the analysis of these data is to detect differentially expressed genes. Some parametric methods, including the two-sample t-test (T-test) and variations of it, have been used. Alternatively, a class of non-parametric algorithms, such as the Wilcoxon rank sum test (WRST), significance analysis of microarrays (SAM) of Tusher et al. (2001), the empirical Bayesian (EB) method of Efron et al. (2001), etc., have been proposed. Most available popular methods are based on t-statistic. Due to the quality of the statistic that they used to describe the difference between groups of data, there are situations when these methods are inefficient, especially when the data follows multi-modal distributions. For example, some genes may display different expression patterns in the same cell type, say, tumor or normal, to form some subtypes. Most available methods are likely to miss these genes. We developed a new non-parametric method for selecting differentially expressed genes by relative entropy, called SDEGRE, to detect differentially expressed genes by combining relative entropy and kernel density estimation, which can detect all types of differences between two groups of samples. The significance of whether a gene is differentially expressed or not can be estimated by resampling-based permutations. We illustrate our method on two data sets from Golub et al. (1999) and Alon et al. (1999). Comparing the results with those of the T-test, the WRST and the SAM, we identified novel differentially expressed genes which are of biological significance through previous biological studies while they were not detected by the other three methods. The results also show that the genes selected by SDEGRE have a better capability to distinguish the two cell types.  相似文献   

9.
MOTIVATION: A common task in analyzing microarray data is to determine which genes are differentially expressed across two kinds of tissue samples or samples obtained under two experimental conditions. Recently several statistical methods have been proposed to accomplish this goal when there are replicated samples under each condition. However, it may not be clear how these methods compare with each other. Our main goal here is to compare three methods, the t-test, a regression modeling approach (Thomas et al., Genome Res., 11, 1227-1236, 2001) and a mixture model approach (Pan et al., http://www.biostat.umn.edu/cgi-bin/rrs?print+2001,2001a,b) with particular attention to their different modeling assumptions. RESULTS: It is pointed out that all the three methods are based on using the two-sample t-statistic or its minor variation, but they differ in how to associate a statistical significance level to the corresponding statistic, leading to possibly large difference in the resulting significance levels and the numbers of genes detected. In particular, we give an explicit formula for the test statistic used in the regression approach. Using the leukemia data of Golub et al. (Science, 285, 531-537, 1999), we illustrate these points. We also briefly compare the results with those of several other methods, including the empirical Bayesian method of Efron et al. (J. Am. Stat. Assoc., to appear, 2001) and the Significance Analysis of Microarray (SAM) method of Tusher et al. (PROC: Natl Acad. Sci. USA, 98, 5116-5121, 2001).  相似文献   

10.
MOTIVATION: The parametric F-test has been widely used in the analysis of factorial microarray experiments to assess treatment effects. However, the normality assumption is often untenable for microarray experiments with small replications. Therefore, permutation-based methods are called for help to assess the statistical significance. The distribution of the F-statistics across all the genes on the array can be regarded as a mixture distribution with a proportion of statistics generated from the null distribution of no differential gene expression whereas the other proportion of statistics generated from the alternative distribution of genes differentially expressed. This results in the fact that the permutation distribution of the F-statistics may not approximate well to the true null distribution of the F-statistics. Therefore, the construction of a proper null statistic to better approximate the null distribution of F-statistic is of great importance to the permutation-based multiple testing in microarray data analysis. RESULTS: In this paper, we extend the ideas of constructing null statistics based on pairwise differences to neglect the treatment effects from the two-sample comparison problem to the multifactorial balanced or unbalanced microarray experiments. A null statistic based on a subpartition method is proposed and its distribution is employed to approximate the null distribution of the F-statistic. The proposed null statistic is able to accommodate unbalance in the design and is also corrected for the undue correlation between its numerator and denominator. In the simulation studies and real biological data analysis, the number of true positives and the false discovery rate (FDR) of the proposed null statistic are compared with those of the permutated version of the F-statistic. It has been shown that our proposed method has a better control of the FDRs and a higher power than the standard permutation method to detect differentially expressed genes because of the better approximated tail probabilities.  相似文献   

11.
Estimating p-values in small microarray experiments   总被引:5,自引:0,他引:5  
MOTIVATION: Microarray data typically have small numbers of observations per gene, which can result in low power for statistical tests. Test statistics that borrow information from data across all of the genes can improve power, but these statistics have non-standard distributions, and their significance must be assessed using permutation analysis. When sample sizes are small, the number of distinct permutations can be severely limited, and pooling the permutation-derived test statistics across all genes has been proposed. However, the null distribution of the test statistics under permutation is not the same for equally and differentially expressed genes. This can have a negative impact on both p-value estimation and the power of information borrowing statistics. RESULTS: We investigate permutation based methods for estimating p-values. One of methods that uses pooling from a selected subset of the data are shown to have the correct type I error rate and to provide accurate estimates of the false discovery rate (FDR). We provide guidelines to select an appropriate subset. We also demonstrate that information borrowing statistics have substantially increased power compared to the t-test in small experiments.  相似文献   

12.
An important and common problem in microarray experiments is the detection of genes that are differentially expressed in a given number of classes. As this problem concerns the selection of significant genes from a large pool of candidate genes, it needs to be carried out within the framework of multiple hypothesis testing. In this paper, we focus on the use of mixture models to handle the multiplicity issue. With this approach, a measure of the local FDR (false discovery rate) is provided for each gene. An attractive feature of the mixture model approach is that it provides a framework for the estimation of the prior probability that a gene is not differentially expressed, and this probability can subsequently be used in forming a decision rule. The rule can also be formed to take the false negative rate into account. We apply this approach to a well-known publicly available data set on breast cancer, and discuss our findings with reference to other approaches.  相似文献   

13.
Everett et al. recently reported on a statistical bias that arises in the target-decoy approach to false discovery rate estimation in two-pass proteomics search strategies as exemplified by X!Tandem. This bias can cause serious underestimation of the false discovery rate. We argue here that the "unbiased" solution proposed by Everett et al., however, is also biased and under certain circumstances can also result in a serious underestimate of the FDR, especially at the protein level.  相似文献   

14.
The increased availability of microarray data has been calling for statistical methods to integrate findings across studies. A common goal of microarray analysis is to determine differentially expressed genes between two conditions, such as treatment vs control. A recent Bayesian metaanalysis model used a prior distribution for the mean log-expression ratios that was a mixture of two normal distributions. This model centered the prior distribution of differential expression at zero, and separated genes into two groups only: expressed and nonexpressed. Here, we introduce a Bayesian three-component truncated normal mixture prior model that more flexibly assigns prior distributions to the differentially expressed genes and produces three groups of genes: up and downregulated, and nonexpressed. We found in simulations of two and five studies that the three-component model outperformed the two-component model using three comparison measures. When analyzing biological data of Bacillus subtilis, we found that the three-component model discovered more genes and omitted fewer genes for the same levels of posterior probability of differential expression than the two-component model, and discovered more genes for fixed thresholds of Bayesian false discovery. We assumed that the data sets were produced from the same microarray platform and were prescaled.  相似文献   

15.

Background

Microarray technology provides an efficient means for globally exploring physiological processes governed by the coordinated expression of multiple genes. However, identification of genes differentially expressed in microarray experiments is challenging because of their potentially high type I error rate. Methods for large-scale statistical analyses have been developed but most of them are applicable to two-sample or two-condition data.

Results

We developed a large-scale multiple-group F-test based method, named ranking analysis of F-statistics (RAF), which is an extension of ranking analysis of microarray data (RAM) for two-sample t-test. In this method, we proposed a novel random splitting approach to generate the null distribution instead of using permutation, which may not be appropriate for microarray data. We also implemented a two-simulation strategy to estimate the false discovery rate. Simulation results suggested that it has higher efficiency in finding differentially expressed genes among multiple classes at a lower false discovery rate than some commonly used methods. By applying our method to the experimental data, we found 107 genes having significantly differential expressions among 4 treatments at <0.7% FDR, of which 31 belong to the expressed sequence tags (ESTs), 76 are unique genes who have known functions in the brain or central nervous system and belong to six major functional groups.

Conclusion

Our method is suitable to identify differentially expressed genes among multiple groups, in particular, when sample size is small.  相似文献   

16.
Partially paired data sets often occur in microarray experiments (Kim et al., 2005; Liu, Liang and Jang, 2006). Discussions of testing with partially paired data are found in the literature (Lin and Stivers 1974; Ekbohm, 1976; Bhoj, 1978). Bhoj (1978) initially proposed a test statistic that uses a convex combination of paired and unpaired t statistics. Kim et al. (2005) later proposed the t3 statistic, which is a linear combination of paired and unpaired t statistics, and then used it to detect differentially expressed (DE) genes in colorectal cancer (CRC) cDNA microarray data. In this paper, we extend Kim et al.'s t3 statistic to the Hotelling's T2 type statistic Tp for detecting DE gene sets of size p. We employ Efron's empirical null principle to incorporate inter-gene correlation in the estimation of the false discovery rate. Then, the proposed Tp statistic is applied to Kim et al's CRC data to detect the DE gene sets of sizes p=2 and p=3. Our results show that for small p, particularly for p=2 and marginally for p=3, the proposed Tp statistic compliments the univariate procedure by detecting additional DE genes that were undetected in the univariate test procedure. We also conduct a simulation study to demonstrate that Efron's empirical null principle is robust to the departure from the normal assumption.  相似文献   

17.

Background  

Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes.  相似文献   

18.
False discovery rate, sensitivity and sample size for microarray studies   总被引:10,自引:0,他引:10  
MOTIVATION: In microarray data studies most researchers are keenly aware of the potentially high rate of false positives and the need to control it. One key statistical shift is the move away from the well-known P-value to false discovery rate (FDR). Less discussion perhaps has been spent on the sensitivity or the associated false negative rate (FNR). The purpose of this paper is to explain in simple ways why the shift from P-value to FDR for statistical assessment of microarray data is necessary, to elucidate the determining factors of FDR and, for a two-sample comparative study, to discuss its control via sample size at the design stage. RESULTS: We use a mixture model, involving differentially expressed (DE) and non-DE genes, that captures the most common problem of finding DE genes. Factors determining FDR are (1) the proportion of truly differentially expressed genes, (2) the distribution of the true differences, (3) measurement variability and (4) sample size. Many current small microarray studies are plagued with large FDR, but controlling FDR alone can lead to unacceptably large FNR. In evaluating a design of a microarray study, sensitivity or FNR curves should be computed routinely together with FDR curves. Under certain assumptions, the FDR and FNR curves coincide, thus simplifying the choice of sample size for controlling the FDR and FNR jointly.  相似文献   

19.
Estimating the false discovery rate using nonparametric deconvolution   总被引:1,自引:0,他引:1  
van de Wiel MA  Kim KI 《Biometrics》2007,63(3):806-815
Given a set of microarray data, the problem is to detect differentially expressed genes, using a false discovery rate (FDR) criterion. As opposed to common procedures in the literature, we do not base the selection criterion on statistical significance only, but also on the effect size. Therefore, we select only those genes that are significantly more differentially expressed than some f-fold (e.g., f = 2). This corresponds to use of an interval null domain for the effect size. Based on a simple error model, we discuss a naive estimator for the FDR, interpreted as the probability that the parameter of interest lies in the null-domain (e.g., mu < log(2)(2) = 1) given that the test statistic exceeds a threshold. We improve the naive estimator by using deconvolution. That is, the density of the parameter of interest is recovered from the data. We study performance of the methods using simulations and real data.  相似文献   

20.
A class of nonparametric statistical methods, including a nonparametric empirical Bayes (EB) method, the Significance Analysis of Microarrays (SAM) and the mixture model method (MMM) have been proposed to detect differential gene expression for replicated microarray experiments. They all depend on constructing a test statistic, for example, a t-statistic, and then using permutation to draw inferences. However, due to special features of microarray data, using standard permutation scores may not estimate the null distribution of the test statistic well, leading to possibly too conservative inferences. We propose a new method of constructing weighted permutation scores to overcome the problem: posterior probabilities of having no differential expression from the EB method are used as weights for genes to better estimate the null distribution of the test statistic. We also propose a weighted method to estimate the false discovery rate (FDR) using the posterior probabilities. Using simulated data and real data for time-course microarray experiments, we show the improved performance of the proposed methods when implemented in MMM, EB and SAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号