首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 303 毫秒
1.
1. Adenosine and its derivatives induced dispersion of leucosomes in leucophores of the medaka, Oryzias latipes. 2. Among the purines used, 5'-N-ethylcarboxiamideadenosine was the most effective and its potency was far greater than that of adenosine, N6-L-phenylisopropyladenosine and N6-cyclohexyladenosine. 3. Methylxanthines inhibited the purine action competitively, but beta adrenergic antagonists and dipyridamole did not. 4. Beta adrenergic agonists and forskolin synergistically augmented the purine action, while Li+ blocked it competitively. 5. The results suggest that medaka leucophores possess A2 adenosine receptors on the cell membranes, the stimulation of which induces leucosome-dispersion response by increasing the cellular level of cyclic AMP through activation of adenylate cyclase activity.  相似文献   

2.
1. The mechanism of the action of atropine, which is known to accelerate the dispersion response of fish melanophores, was examined by use of various receptor antagonists.2. The effects of atropine were found to be independent of adenosine receptors, beta-adrenoceptors and MSH receptors on the melanophore membrane.3. Analogs of atropine, such as scopolamine, also had a potent pigment-dispersing effect on melanophores, whereas the quaternary ammonium derivatives, which are positively charged molecules, had only a small effect.4. These results suggest that the possible site of atropine action is within the chromatophores themselves.5. In addition to the melanosome-dispersing effect, atropine caused a shift in the spectral peak of reflected light toward shorter wavelengths and the dispersion of leucosomes in the motile iridophores of the blue damselfish and in the leucophores of the medaka, respectively.  相似文献   

3.
1. Experiments using synaptosome beds suggested that ATP was released from presynaptic sites and degraded to adenosine in the synaptic cleft and that the resulting adenosine was taken up again into nerve endings where it was re-phosphorylated to ATP. 2. Adenosine derivatives in the synaptic cleft inhibited the postsynaptic potentials in olfactory cortex slices in vitro, presumably by the inhibition of Ca2+ influx into nerve endings which resulted in the reduction of transmitter release. 3. The adenosine derivatives also increased the level of cyclic AMP in the slices under the same conditions as above. 4. Although the nature of the "adenosine receptors" for both functions was remarkably similar, the increase of cyclic AMP did not mediate the inhibitory action, but the presynaptic increase of cyclic AMP induced by adenosine derivatives might mediate the facilitation observed in the olfactory cortex. 5. Possible physiological roles of extracellular adenosine derivatives in mammalian brain were classified, at different sites of action around the synapses, with different time courses and modes of action, directly or via the increase of intracellular cyclic AMP.  相似文献   

4.
Adenosine Receptors Mediating Cyclic AMP Productioin the Rat Hippocampus   总被引:6,自引:0,他引:6  
In the transversely cut rat hippocampus, adenosine caused a dose-dependent increase in the accumulation of [3H]cyclic AMP from [3H]ATP. Adenosine breakdown products were inactive. AMP was somewhat less effective than adenosine, and its effect could be partially, but not completely, abolished by alpha, beta-methylene-ADP and GMP, which inhibited its metabolism by 5'-nucleotidase. The effect of adenosine was unaffected by inhibitors of adenosine deaminase, but enhanced by several inhibitors of adenosine uptake. Some analogues of adenosine, including N6-phenylisopropyladenosine (PIA), 2-chloroadenosine and adenosine 5'-ethylcarboxamide (NECA), were more active than adenosine, whereas others such as 2-deoxyadenosine and 9-(tetrahydro-2-furyl)adenine (SQ 22536) actually inhibited the response. The effect of PIA was highly stereospecific. The action of adenosine was inhibited by several alkylxanthines, the most potent of which was 8-phenyltheophylline. [3H]Cyclohexyladenosine (CHA) bound specifically to cell membranes from the rat hippocampus. The extent of binding was similar to that found in other cortical areas. The relative potency of some adenosine analogues and alkylxanthines to displace labelled CHA was essentially similar to their potency as effectors of the cyclic AMP system. Adenosine contributed to the cyclic AMP-elevating effect of alpha-adrenoceptor-stimulating drugs and several amino acids, but not to that seen with isoprenaline. The cyclic AMP increase seen following depolarization was only partially adenosine-dependent. The present results demonstrate that the rat hippocampus contains adenosine receptors mediating cyclic AMP accumulation and that these receptors have similar characteristics to those mediating pyramidal cell depression. Adenosine-induced cyclic AMP accumulation may be used as a biochemical correlate to electrophysiology and as a convenient parameter to assess the influence of drugs on adenosine mechanisms in the rat hippocampus.  相似文献   

5.
The action of adenosine on lutropin (LH)-stimulated cyclic AMP production and LH-induced desensitization of adenylate cyclase in rat Leydig tumour cells was investigated. Adenosine and N6-(phenylisopropyl)adenosine caused a dose-dependent potentiation of LH-stimulated cyclic AMP production at concentrations (0.01-10 microM) which alone did not produce an increase in cyclic AMP production. However, 2-deoxyadenosine had no effect either alone or in combination with LH on cyclic AMP production. The potentiation produced by adenosine was unaffected by concentrations of the specific nucleoside-transport inhibitor dipyridamole, which inhibited [3H]adenosine uptake by up to 90%. The phosphodiesterase inhibitor 3-isobutyl-l-methylxanthine, but not RO-10-1724, inhibited the adenosine-induced potentiation. In the presence of adenosine, the kinetics of LH-stimulated cyclic AMP production were linear with time up to 2h, compared with those with LH alone, which showed a characteristic decrease in rate of cyclic AMP production after the first 15-20 min. Consistent with the altered kinetics, adenosine also inhibited the LH-induced desensitization of adenylate cyclase. These results suggest that adenosine has effects on rat tumour Leydig cells through receptors on the external surface of the plasma membrane. This receptor has characteristics similar to those of the R-type receptors, which have been shown either to stimulate or to inhibit adenylate cyclase. However, the effects of adenosine in the present studies does not involve a direct inhibition or activation of adenylate cyclase, but may involve an as yet undefined receptor-mediated modulation of adenylate cyclase.  相似文献   

6.
In whitish parts of teleost skin, the coloration is attributed to a light scattering phenomenon within light-reflecting chromatophores, namely leucophores and iridophores, which contain high refractive index materials in their cytoplasmic organelles, leucosomes and light-reflecting platelets, respectively. Previous chemical examinations revealed that guanine is a major constituent of the materials in the platelets of the iridophores, while, in leucophores, the detailed chemical nature of the materials contained in the leucosomes has not been reported. Here, using liquid chromatography-tandem mass spectroscopy, we investigated the chemical features of materials eluted from scales, larvae, and single chromatophores of the medaka. Results of the liquid chromatography-tandem mass spectroscopy suggested that uric acid is a major constituent of the high refractive index materials in medaka leucophores and is a unique marker to investigate the presence of leucophores in the fish. The whitish appearance of the medaka leucophores may be attributed to the light-scattering phenomenon in leucosomes, which contain highly concentrated uric acid.  相似文献   

7.
The present communication shows the effects of several alpha-adrenergic agonists and antagonists on cyclic AMP levels in hamster epididymal adipocytes. In response to ACTH (30 mU/ml) in combination with 1-methyl-3-isobutylxanthine (0.10 mM) or adenosine deaminase (1.0 micrograms/ml), cyclic AMP levels increased to a maximum by 10 min and this level was maintained for another 20 min. Elevated cyclic AMP levels were partially suppressed by the alpha-adrenergic agents clonidine, methoxamine, methyl norepinephrine and phenylephrine. The lowest effective concentration of each of these agonists required to suppress cyclic AMP levels was 10 nM clonidine; 3 microM methoxamine; 10 microM methyl norepinephrine; 10 microM phenylephrine. Clonidine and methoxamine suppressed cyclic AMP levels by nearly 65% while phenylephrine and methyl norepinephrine caused only a 30% decline. Studies of the relative potencies of alpha-adrenergic blocking drugs on prevention of the inhibitor effect of clonidine on cyclic AMP levels disclosed that phentolamine and yohimbine were more potent blockers of clonidine action than phenoxybenzamine and prazosin. The rank order of potencies of agonists at causing suppression of cyclic AMP levels and the rank order of potencies of antagonists of clonidine action suggest similarity of the alpha-adrenergic receptors present on hamster adipocytes, which affect cyclic AMP accumulation to alpha-2 adrenergic receptors.  相似文献   

8.
The present communication shows the effects of several α-adrenergic agonists and antagonists on cyclic AMP levels in hamster epididymal adipocytes. In response to ACTH (30 mU/ml) in combination with 1-methyl-3-isobutylxanthine (0.10 mM) or adenosine deaminase (1.0 μg/ml), cyclic AMP levels increased to a maximum by 10 min and this level was maintained for another 20 min. Elevated cyclic AMP levels were partially suppressed by the α-adrenergic agents clonidine, methoxamine, methyl norepinephrine and phenylephrine. The lowest effective concentration of each of these agonists required to suppress cyclic AMP levels was 10 nM clonidine; 3 μM methoxamine; 10 μM methyl norepinephrine; 10 μM phenylephrine. Clonidine and methoxamine suppressed cyclic AMP levels by nearly 65% while phenylephrine and methyl norepinephrine caused only a 30% decline. Studies of the relative potencies of α-adrenergic blocking drugs on prevention of the inhibitory effect of clonidine on cyclic AMP levels disclosed that phentolamine and yohimbine were more potent blockers of clonidine action than phenoxybenzamine and prazosin. The rank order of potencies of agonists at causing suppression of cyclic AMP levels and the rank order of potencies of antagonists of clonidine action suggest similarity of the α-adrenergic receptors present on hamster adipocytes, which affect cyclic AMP accumulation to α-2 adrenergic receptors.  相似文献   

9.
In fat cells isolated from the parametrial adipose tissue of rats, the addition of purified adenosine deaminase increased lipolysis and cyclic adenosine 3':5'-monophosphate (cyclic AMP) accumulation. Adenosine deaminase markedly potentiated cyclic AMP accumulation due to norepinephrine. The increase in cyclic AMP due to adenosine deaminase was as rapid as that of theophylline with near maximal effects seen after only a 20-sec incubation. The increases in cyclic AMP due to crystalline adenosine deaminase from intestinal mucosa were seen at concentrations as low as 0.05 mug per ml. Further purification of the crystalline enzyme preparation by Sephadex G-100 chromatography increased both adenosine deaminase activity and cyclic AMP accumulation by fat cells. The effects of adenosine deaminase on fat cell metabolism were reversed by the addition of low concentrations of N6-(phenylisopropyl)adenosine, an analog of adenosine which is not deaminated. The effects of adenosine deaminase on cyclic AMP accumulation were blocked by coformycin which is a potent inhibitor of the enzyme. These findings suggest that deamination of adenosine is responsible for the observed effects of adenosine deaminase preparations. Protein kinase activity of fat cell homogenates was unaffected by adenosine or N6-(phenylisopropyl)adenosine. Norepinephrine-activated adenylate cyclase activity of fat cell ghosts was not inhibited by N6-(phenylisopropyl)adenosine. Adenosine deaminase did not alter basal or norepinephrine-activated adenylate cyclase activity. Cyclic AMP phosphodiesterase activity of fat cell ghosts was also unaffected by adenosine deaminase. Basal and insulin-stimulated glucose oxidation were little affected by adenosine deaminase. However, the addition of adenosine deaminase to fat cells incubated with 1.5 muM norepinephrine abolished the antilipolytic action of insulin and markedly reduced the increase in glucose oxidation due to insulin. These effects were reversed by N6-(phenylisopropyl)adenosine. Phenylisopropyl adenosine did not affect insulin action during a 1-hour incubation. If fat cells were incubated for 2 hours with phenylisopropyl adenosine prior to the addition of insulin for 1 hour there was a marked potentiation of insulin action. The potentiation of insulin action by prior incubation with phenylisopropyl adenosine was not unique as prostaglandin E1, and nicotinic acid had similar effects.  相似文献   

10.
《Developmental biology》1986,117(1):245-251
Adenosine acts as a cyclic AMP antagonist in Dictyostelium discoideum. It inhibits the binding of cyclic AMP to cell surface receptors and the induction of postaggregative differentiation by cyclic AMP. We investigated the nucleoside specificity and dose dependency of both inhibitory effects of adenosine. It was found that adenosine inhibits cyclic AMP binding and cyclic-AMP-induced differentiation with a Ki of about 300 μM. Alterations in the purine moiety of adenosine generally decrease the inhibitory effect of the molecule, whereas alterations in the ribose moiety are tolerated and in most cases even increase the inhibitory effect of the molecule on both cyclic AMP binding and differentiation induction. A strong correlation (r = 0.996, P < 0.01%) between the specificities for adenosine derivatives of these two inhibitory processes is demonstrated. The nucleoside specificity for the inhibition of cyclic AMP action in D. discoideum resembles that of the P site of higher organisms. In contrast to effects mediated by the P site of higher organisms, the effects of adenosine mediated by the Dictyostelium receptor cannot be prevented by inhibiting adenosine uptake; this makes it very likely that the adenosine receptor, which is involved in the effects of adenosine on cyclic AMP binding and differentiation induction, is located at the cell surface.  相似文献   

11.
The effects of forskolin, dibutyryl cyclic AMP, and 5'-N-ethylcarboxamide adenosine on specific 22Na uptake by synaptosomes stimulated by veratridine were investigated. All substances inhibited 22Na uptake, with forskolin more potent than 5'-N-ethylcarboxamide and this latter one more potent than dibutyryl cyclic AMP. In the absence of preincubation with forskolin, this substance caused little or no effect on 22Na uptake by synaptosomes. In the presence of the adenosine antagonist dipropylsulfophenylxanthine, the inhibitory effect of 5'-N-ethylcarboxamide adenosine on 22Na uptake was consistently antagonized. The results were interpreted as forskolin and 5'-N-ethylcarboxamide adenosine increasing cyclic AMP accumulation, and dibutyryl cyclic AMP mimicking it, and by these mechanisms decreasing sodium uptake through the sodium channels.  相似文献   

12.
Glucagon (10nM) prevented insulin (10nM) from activating the plasma-membrane cyclic AMP phosphodiesterase. This effect of glucagon was abolished by either PIA [N6-(phenylisopropyl)adenosine] (100nM) or adenosine (10 microM). Neither PIA nor adenosine exerted any effect on the plasma-membrane cyclic AMP phosphodiesterase activity either alone or in combination with glucagon. Furthermore, PIA and adenosine did not potentiate the action of insulin in activating this enzyme. 2-Deoxy-adenosine (10 microM) was ineffective in mimicking the action of adenosine. The effect of PIA in preventing the blockade by glucagon of insulin's action was inhibited by low concentrations of theophylline. Half-maximal effects of PIA were elicited at around 6nM-PIA. It is suggested that adenosine is exerting its effects on this system through an R-type receptor. This receptor does not appear to be directly coupled to adenylate cyclase, however, as PIA did not affect either the activity of adenylate cyclase or intracellular cyclic AMP concentrations. Insulin's activation of the plasma-membrane cyclic AMP phosphodiesterase, in the presence of both glucagon and PIA, was augmented by increasing intracellular cyclic AMP concentrations with either dibutyryl cyclic AMP or the cyclic AMP phosphodiesterase inhibitor Ro-20-1724. PIA also inhibited the ability of glucagon to uncouple (desensitize) adenylate cyclase activity in intact hepatocytes. This occurred at a half-maximal concentration of around 3 microM-PIA. However, if insulin (10 nM) was also present in the incubation medium, PIA exerted its action at a much lower concentration, with a half-maximal effect occurring at around 4 nM.  相似文献   

13.
The accumulation of cyclic AMP in Jurkat cells was stimulated by adenosine and adenosine analogues. The accumulation of cyclic AMP induced by these agents was competitively antagonized by the adenosine receptor antagonist 8-p-sulphophenyl-theophylline (KD appr 1.9 microM). The lectin PHA, the diacylglycerol OAG as well as tumor promoting phorbol esters enhanced the accumulation of cyclic AMP induced by the adenosine analogue NECA. The results suggest that activation of CD2/CD3 receptors by lectins could potentiate the endogenous cyclic AMP stimulator adenosine via activation of protein kinase C.  相似文献   

14.
There appear to be considerable differences among tissues in the inhibitory action of adenosine 3′,5′-monophosphate (cyclic AMP) on phosphatidylinositol (PI) turnover induced by various extracellular signals. The present studies were on human peripheral lymphocytes and rat hepatocytes. In the lymphocyte system, cells are activated by phytohemagglutinin that induces PI turnover, and this PI turnover and cellular activation are profoundly blocked by dibutyryl cyclic AMP as well as by prostaglandin E1 which markedly increases cyclic AMP. In contrast, in the hepatocyte system, glycogenolysis is enhanced by α-agonists that induce PI turnover as well as by β-agonists and glucagon that increase cyclic AMP. In these cells the two classes of receptors appear to function independently, and PI turnover is not inhibited by cyclic AMP.  相似文献   

15.
1. The effects of purines on denervated melanophores of the medaka were studied under experimental conditions in which melanosomes were aggregated by norepinephrine or lithium ion beforehand.2. Adenosine and its derivatives caused melanosome dispersion; the order of potency for the series was; NECA > adenosine > ATP > 2-chloroadenosine > PIA > CHA > cyclic AMP.3. 8-Phenyltheophylline, a potent purinoceptor antagonist, blocked the effect of purines and caused a rightward shift of the adenosine and analog concentration-response curves.4. 8-Br cyclic AMP also caused melanosome dispersion but its action was not blocked by 8-phenyladenosine. Dibutyryl cyclic AMP, cyclic GMP, dibutyryl cyclic GMP, and 8-br cyclic GMP were all ineffective.5. The effect of adenosine was immediately eliminated by adenosine deaminase but, actions of NECA, AMP, ADP, ATP, and cyclic AMP were not.6. Forskolin, a potent activator of adenylate cyclase, mimicked the action of adenosine.7. It is concluded that adenosine and its derivatives mediate their melanosome-dispersing effect via a P1-purinoceptor that displays characteristics of the A2-subtype and that adenine nucleotides directly activate the A2-receptor without conversion to adenosine.  相似文献   

16.
Activation of rat adipocyte R1 adenosine receptors by phenylisopropyladenosine (PIA) decreased cyclic AMP and lipolysis; this effect was blocked in cells from pertussis-toxin-treated rats. In contrast, the ability of 2',5'-dideoxyadenosine to decrease cyclic AMP was not affected by pertussis-toxin treatment. Addition of adenosine deaminase to the medium in which adipocytes from control animals were incubated resulted in activation of lipolysis. Interestingly, adipocytes from toxin-treated rats (which had an already increased basal lipolysis) responded in an opposite fashion to the addition of adenosine deaminase, i.e. the enzyme decreased lipolysis, which suggested that adenosine might be increasing lipolysis in these cells. Studies with the selective agonists N-ethylcarboxamidoadenosine (NECA) and PIA indicated that adenosine increases lipolysis and cyclic AMP accumulation in these cells and that these actions are mediated through Ra adenosine receptors. Adenosine-mediated accumulation of cyclic AMP was also observed in cells preincubated with pertussis toxin (2 micrograms/ml) for 3 h. In these studies NECA was also more effective than PIA. Our results indicate that there are three types of adenosine receptors in fat-cells, whose actions are affected differently by pertussis toxin, i.e. Ri-mediated actions are abolished, Ra-mediated actions are revealed and P-mediated actions are not affected.  相似文献   

17.
The potencies and intrinsic activities of adenosine analogs for stimulating cyclic AMP accumulation in slices of rat cerebral cortex were examined. 5'-N-Ethylcarboxamidoadenosine (NECA) caused the greatest increase in cyclic AMP accumulation (19.2-fold). 2-Chloroadenosine (2-CAD) induced a similar increase, but adenosine and six other analogs caused much smaller increases. All agonists tested had similar potencies in activating this response. Inhibition of adenosine uptake with 10 microM dipyridamole did not affect the maximal response to any agonist, although the potency of adenosine was increased approximately threefold. Each analog was also able to block partially the stimulation of cyclic AMP accumulation caused by NECA. Levels of cyclic AMP accumulation in the presence of NECA plus another analog were similar to those observed when the analog alone was present, as expected for partial agonists. Furthermore, the EC50 value for R-(-)-N6(2-phenylisopropyl)adenosine in increasing cyclic AMP accumulation was similar to the KI value for inhibiting the response to NECA. The EC50 value for adenosine was substantially higher than the KI value for inhibiting the response to NECA; however, in the presence of dipyridamole, the two values were more closely correlated. The response to NECA was blocked by 8-phenyltheophylline, 1,3-diethyl-8-phenylxanthine, and 8-p-sulfophenyltheophylline, with KI values from 1 to 10 microM. The results suggest that adenosine analogs stimulate cyclic AMP accumulation in cerebral cortex through low-affinity receptors, but that some analogs only partially activate these receptors. Adenosine itself may also be a partial agonist, or its actions may be obscured by simultaneous activation of another receptor.  相似文献   

18.
We examined the mechanism by which adenosine inhibits prolactin secretion from GH3 cells, a rat pituitary tumour line. Prolactin release is enhanced by vasoactive intestinal peptide (VIP), which increases cyclic AMP, and by thyrotropin-releasing hormone (TRH), which increases inositol phosphates (IPx). Analogues of adenosine decreased prolactin release, VIP-stimulated cyclic AMP accumulation and TRH-stimulated inositol phospholipid hydrolysis and IPx generation. Inhibition of InsP3 production by R-N6-phenylisopropyladenosine (R-PIA) was rapid (15 s) and was not affected by the addition of forskolin or the removal of external Ca2+. Addition of adenosine deaminase or the potent adenosine-receptor antagonist, BW-A1433U, enhanced the accumulation of cyclic AMP by VIP, indicating that endogenously produced adenosine tonically inhibits adenylate cyclase. The potency order of adenosine analogues for inhibition of cyclic AMP and IPx responses (measured in the presence of adenosine deaminase) was N6-cyclopentyladenosine greater than R-PIA greater than 5'-N-ethylcarboxamidoadenosine. This rank order indicates that inhibitions of both cyclic AMP and InsP3 production are mediated by adenosine A1 receptors. Responses to R-PIA were blocked by BW-A1433U (1 microM) or by pretreatment of cells with pertussis toxin. A greater amount of toxin was required to eliminate the effect of R-PIA on inositol phosphate than on cyclic AMP accumulation. These data indicate that adenosine, in addition to inhibiting cyclic AMP accumulation, decreases IPx production in GH3 cells, possibly by directly inhibiting phosphoinositide hydrolysis.  相似文献   

19.
Dopamine synthesis rate and cyclic AMP concentration were measured in synaptosomes prepared from rat striatum. Dopamine synthesis rate was decreased by the addition of either adenosine deaminase or 8-phenyltheophylline, an adenosine receptor blocker, and was increased by the addition of 2-chloroadenosine. The addition of L-glutamate in the absence of adenosine deaminase decreased both dopamine synthesis rate and cyclic AMP concentration; in the presence of adenosine deaminase, glutamate had no effect on basal dopamine synthesis, but enhanced K(+)-stimulated synthesis. Both these effects of glutamate were abolished in Ca2(+)-free medium or in the presence of 2-amino-5-phosphonovalerate, an N-methyl-D-aspartate (NMDA) receptor blocker. In Mg2(+)-free medium with adenosine deaminase, glutamate enhanced both basal and K(+)-stimulated synthesis. These results suggest that dopaminergic terminals have A2 adenosine receptors, whose activation can stimulate dopamine synthesis by a cyclic AMP-dependent mechanism, and NMDA receptors, which modulate dopamine synthesis by a Ca2(+)-dependent mechanism.  相似文献   

20.
The accumulations of radioactive cyclic AMP elicited by adenosine, norepinephrine, and histamine in adenine-labeled vesicular entities of a particulate fraction from guinea pig cerebral cortex are greatly reduced as a result of prolonged preincubation. The presence of adenosine deaminase during preincubations largely prevents the loss of adenosine, norepinephrine and histamine responses. Adenosine deaminase was inactivated by deoxycoformycin prior to stimulation of cyclic AMP accumulation by adenosine or amines. If adenosine deaminase is not inactivated, responses to norepinephrine are not significant and histamine responses are reduced by 50%. Adenosine deaminase cannot restore responsiveness of the cyclic AMP-generating systems. It is proposed that, in particulate fractions of guinea pig cerebral cortex, low levels of adenosine cause a slow loss of receptors and/or coupling of receptors to cyclic AMP-generating systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号