首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A procedure has been developed by which the hybrid formed between a labeled RNA and complementary DNA can be selectively separated from all other single and double-stranded nucleic acids. We describe the application of this procedure to the quantitative determination of labeled avian tumor virus RNA. Purified DNA complementary to avian myeloblastosis virus RNA is extended at its 3′ terminus with 40 to 60 dCMP residues, using terminal deoxynucleotidyl-transferase. The elongated DNA is annealed with the labeled nucleic acid preparation and the mixture is passed through a column of Sephadex to which poly(I) has been covalently bound. The poly(I) retains the specific RNA-DNA hybrids by virtue of their poly(C) extension. The column is washed with RNAase to degrade nonhybridized RNA, the RNA retained on the column is eluted with formamide and its radioactivity is determined. The background hybridization was reduced to 0.003 to 0.008% by addition of oligo(C)5.20 to the hybridization mixture and by carrying out the adsorption to the poly(I)-Sephadex column in the presence of poly(U). The hybridization efficiency was about 50%. The content of radioactive Rous sarcoma virus-specific RNA was determined in infected and uninfected cells after labeling with [3H]uridine for two hours. The content of labeled virus-specific RNA in infected cells was 0.6 to 0.9% and 0.05% in uninfected cells. The value found for monkey cell RNA was 0.009%. This method can be used for the detection of hybrids between labeled RNA and complementary DNAs too short to allow quantitation by conventional methods. If the RNAase step is omitted the procedure can be used for the isolation of any RNA for which a complementary DNA is available, as well as for its precursor.  相似文献   

2.
A method is described for the preparation isolation of highly purified adenovirus RNA species. Cytoplasmic RNAs from cells infected with adenovirus 2 were selected by hybridization to viral DNA fragments bound to nitrocellulose membranes. A series of washes at elevated temperatures (50-70 degrees) determined conditions at which the true hybrids were stable but non-specific RNA was removed. This temperature has been found to correlate with the base composition of the DNA fragment. After washing at this predetermined temperature, the specific RNA was eluted at 85 degrees. The purity of the eluted RNA was greater than 95% as determined by size, sequence specificity, and template activity in an in vitro protein synthesizing system. The method described should be generally useful for purification of specific RNAs.  相似文献   

3.
Modifications of the filter hybridization method for the measurement and isolation of simian virus 40 (SV40) RNA from transformed cells are described. The modified method used small (0.02 cm2) nitrocellulose filters with > 30 μg/cm2 SV40 DNA applied following formaldehyde denaturation. The small volume and high DNA densities allowed hybridization to be completed in 2 h and washing after hybridization to be completed in 6 h. The washing reduced background to 1 × 10?5 of input radioactivity without using nucleases. The efficiency of hybridization after washing was 40% or greater. These procedures have allowed the quantification of proportions of SV40 RNA in labeled RNA from transformed lines and the characterization of SV40 RNAs by electrophoresis and cell-free translation. A 3.7-kb SV40 RNA from SV80 cells was discovered in this work.  相似文献   

4.
PART of the evidence which indicates that RNA tumour viruses replicate through a DNA intermediate1 was the detection of DNA which is complementary to the viral RNA in leukaemic cells transformed by avian myeloblastosis virus (AMV)2 and in cells transformed in vitro by avian sarcoma viruses, Schmidt-Ruppin (SR-RSV) and B-77 (ref. 3). If this DNA serves as a template for the viral RNA, it must be a copy of the entire viral genome. One of the necessary requirements for this function is that the homologous DNA has the same nucleotide composition as the viral RNA. In this study, the average base composition of the RNA which had been hybridized to homologous DNA from transformed cells was compared with the base composition of the input viral RNA. Two experimental conditions had to be met: (1) the recovery of all the ribonucleotides which had been hybridized and (2) the absence of partially hybridized ribonucleotide sequences. The first requirement called for the deletion of the treatment of DNA-RNA hybrids with pancreatic ribonuclease fraction A and ribonuclease T1 which had been used in our previous experiments because such a treatment can cause the non-random loss of hybridized nucleotides4. The second requirement called for a hybridization and washing procedure in which only specifically hybridized ribonucleotide sequences would remain bound to the filters. Both of these conditions were met by using fragmented viral RNA and a modified washing procedure which excluded the use of ribonuclease. The results show that the average nucleotide composition of the hybridized RNA is identical to that of the input viral RNA.  相似文献   

5.
Nucleic acid hybridization using DNA covalently coupled to cellulose.   总被引:52,自引:0,他引:52  
B E Noyes  G R Stark 《Cell》1975,5(3):301-310
We describe a method for linking RNA and DNA covalently to finely divided cellulose through a diazotized aryl amine, which reacts primarily with guanine and uracil (thymine) residues of single strands. The high efficiency of coupling and high capacity of the cellulose for nucleic acid make possible a product with as much as 67 mug of nucleic acid per mg of cellulose. The product is especially suitable for hybridization experiments where very low backgrounds are important, and it is stable in 99% formamide at 80 degrees C so that hybridized nucleic acid can be recovered easily. Full length linear Simian Virus 40 (SV40) DNA, produced by cleavage of SV40(I) DNA with S1 nuclease, can be coupled to diazo cellulose with an efficiency of 80-90%, and is effective in hybridization experiments with SV40 DNA, complementary RNA synthesized in vitro from SV40(I) DNA with E. coli RNA polymerase, and the SV40-specific fraction of total RNA from SV40-infected and transformed cells. In these experiments an excess of cellulose-bound DNA was used, and the efficiency of hybridization was about 90% when ribonuclease treatment of the hybrids was omitted.  相似文献   

6.
S Levy  H Aviv 《Biochemistry》1976,15(9):1844-1847
A method is described to quantitate labeled globin mRNA by hybridization with excess cDNA which was enzymatically polymerized on oligo(dT)-cellulose. In a large excess of cDNA-cellulose the rate of RNA hybridization was dependent on DNA concentration and not on RNA concentration. Nonhybridized RNA can be digested by RNase and washed from the cDNA which is covalently bound to cellulose. This enables the detection of labeled globin mRNA even when present in a porportion as low as 0.02-0.03% of the total RNA.  相似文献   

7.
Binding of E. coli RNA polymerase to chromatin subunits.   总被引:6,自引:3,他引:3       下载免费PDF全文
  相似文献   

8.
A new graphical analytical technique is described for the hybridization of bacterial RNA with denatured homologous DNA immobilized on cellulose nitrate membrane filters. To a constant amount of DNA, various amounts of bacterial RNA were added and the percentage of input RNA bound was plotted against the DNA/RNA weight ratio in a given experiment. When RNA samples were used that hybridize to denatured DNA as a single species, the resulting curves (RNA-hybridization-efficiency curves) could be analysed to show the percentage of the DNA capable of specifically binding the RNA and could also be used to detect the presence of minor RNA contaminants in a purified specimen. The method could also estimate the relative amounts of two species of RNA in a mixture when these were hybridized independently to different DNA cistrons or cistron groups. As an example of RNA that can be studied in this way, the 16s and 23s ribosomal RNA species of Bacillus subtilis were chosen. These each behave in DNA-RNA hybridization as a single species and bind independently to different groups of DNA cistrons. The results obtained from hybridization-efficiency curves were compared with those obtained by the more usual method of saturating the specific DNA regions with excess of ribosomal RNA (hybridization-saturation curves). It was confirmed by both approaches that 0.15 (+/-0.02)% of B. subtilis DNA would hybridize with 16s ribosomal RNA, 0.30 (+/-0.02)% would hybridize with 23s ribosomal RNA, and 0.46 (+/-0.02)% would hybridize with (16s+23s) ribosomal RNA. This agreement suggested that mass-action equilibria between hybridized and free RNA had a negligible effect on the hybridization curves over the range of DNA and RNA concentrations employed.  相似文献   

9.
DNA-binding nonhistone proteins: DNA site reassociation.   总被引:2,自引:2,他引:0       下载免费PDF全文
The DNA-binding nonhistone proteins (NHP) have been demonstrated to fractionate the rat genome into protein-bound and unbound DNA sequences. Twenty percent of highly sheared rat DNA [approximately 350 base pair (bp)] can be retained on membrane filters as protein complexes. When extracted from the filter and retitrated with the NHP, a 4- to 5-fold enrichment of binding sites is present in the bound DNA with few, if any, sites detected in the unbound DNA. Rat DNA restricted by EcoRI endonuclease can be fractionated by its DNA-binding NHP retention characteristics. Reassociation kinetics of the bound restricted sequences indicate that 45.6% is a subset of total single-copy sequence of the rat genome an 26.9% is repetitive sequences. Cross hybridization studies indicate the repetitive sequences of the bound DNA are not enriched as much as the slow component of the rat genome. Thus a 4-fold enrichment of a subset of the rat genome has been observed via NHP-DNA interactions.  相似文献   

10.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

11.
We have developed a three-component system for microbial identification that consists of (i) a universal syringe-operated silica minicolumn for successive DNA and RNA isolation, fractionation, fragmentation, fluorescent labeling, and removal of excess free label and short oligonucleotides; (ii) microarrays of immobilized oligonucleotide probes for 16S rRNA identification; and (iii) a portable battery-powered device for imaging the hybridization of fluorescently labeled RNA fragments with the arrays. The minicolumn combines a guanidine thiocyanate method of nucleic acid isolation with a newly developed hydroxyl radical-based technique for DNA and RNA labeling and fragmentation. DNA and RNA can also be fractionated through differential binding of double- and single-stranded forms of nucleic acids to the silica. The procedure involves sequential washing of the column with different solutions. No vacuum filtration steps, phenol extraction, or centrifugation is required. After hybridization, the overall fluorescence pattern is captured as a digital image or as a Polaroid photo. This three-component system was used to discriminate Escherichia coli, Bacillus subtilis, Bacillus thuringiensis, and human HL60 cells. The procedure is rapid: beginning with whole cells, it takes approximately 25 min to obtain labeled DNA and RNA samples and an additional 25 min to hybridize and acquire the microarray image using a stationary image analysis system or the portable imager.  相似文献   

12.
A rapid, convenient and economical method for the hybridization of electrophoretically resolved RNA to DNA restriction fragments immobilized on nitrocellulose filters is described. DNA was digested, electrophoresed on agarose gels in a wide band and transferred to a nitrocellulose filter. The filter was then placed on the surface of a second gel containing radioactively labeled RNA electrophoresed under denaturing conditions in a similar way. The filter and gel were oriented so that the DNA and RNA bands were perpendicular to one another and the RNA was transferred from the gel through the filter under conditions which promote RNA-DNA hybridization. Following washing, the filter was autoradiographed. RNA-DNA sequence relationships could be conveniently determined from the spots produced at regions of intersection of homologous nucleic acids. The two dimensional array formed in this procedure fascilitates the rapid ordering of DNA restriction fragments. An example of its use for this purpose is presented.  相似文献   

13.
E Gilboa  C L Prives  H Aviv 《Biochemistry》1975,14(19):4215-4220
SV-40 DNA sheared form was coupled in a stable covalent bond to cyanogen bromide activated Sepharose. Under the conditions used at least 80% of the DNA was bound to Sepharose. The T 1/2 of hybridization of 0.5 mug/ml of SV-40 cRNA to SV-40 DNA-Sepharose was 1 hr. This rate of hybridization is sufficiently rapid to purify SV-40 sequences from solutions containing as little as 0.05-0.1 mug/ml. Nonspecific hybridization of RNA is in the range of 0.1-0.2% of the total input RNA. The DNA-Sepharose is fairly stable and can be reused several times to purify RNA. The SV-40 DNA-Sepharose was used to select large quantities of virus specific RNA from SV-40 infected BS-C-1 cells. The virus specific RNA when added to cell-free extracts from wheat germ was shown to direct the synthesis of the major viral structural protein VP-1.  相似文献   

14.
15.
Ribonucleic acid (RNA) species from aerobically and anaerobically grown Rhodopseudomonas spheroides were compared via hybridization to deoxyribonucleic acid (DNA). Both long-labeled and stable RNA bound to chromosomal DNA to the same extent, regardless of derivation. About 4% of the chromosomal DNA hybridized with total cell RNA and about 0.08% with stable RNA. About 4% of the mixed satellite DNA could be hybridized to total cell RNA from aerobic or anaerobic cultures, whereas essentially no stable RNA formed a hybrid with this DNA. Hybridization competition experiments with aerobic and anaerobic pulse-labeled RNA and chromosomal or satellite DNA demonstrated that no qualitative differences existed between the RNA species. It is concluded that identical species of RNA in the same relative amounts are synthesized by R. spheroides during aerobic or anaerobic growth on the same medium.  相似文献   

16.
Isolated chromosomal DNA is associated with polypeptides that are not released from DNA by several methods designed to purify DNA, e.g. treatment with sodium dodecyl sulphate. DNA fragments associated with these very tight DNA/protein complexes show high affinity to nitrocellulose filters in the presence of salt concentrations of 500 mM or greater. Consequently, a fraction of AluI-fragmented native DNA comprising the complexes and 0.2 to 0.3 micron of vicinal DNA can be isolated by one filtration step. This fraction of DNA shows characteristics of residual DNA sequences retained in nuclei after extraction with nucleases and high salt (nuclear matrix). The DNA fragments retained on filters are highly enriched in replicative DNA; and their degree of hybridization with poly(A)+ RNA points to enrichment in actively transcribed sequences. The results support previous work indicating that the very tight DNA/polypeptide complexes co-isolating with DNA under conditions that release other peptide materials from DNA may be anchorage sites of DNA in the nuclear matrix. Moreover, the method described here allows isolation of replicating and actively transcribed DNA sequences directly from isolated total genomic DNA by skipping artefact-prone isolations of the nuclear matrix.  相似文献   

17.
Variations of the membrane filter technique for deoxyribonucleic acid (DNA) hybridizations were studied with respect to Streptomyces species. At the temperatures required for specific hybridization of DNA with the high melting temperature (Tm) characteristic of Streptomyces, large amounts (up to 97%) of filter-bound DNA became eluted, in all reaction mixtures studied, within 21 hr. In most solutions this leaching was increased by the presence of sheared denatured DNA. Incubation of DNA-loaded filters in a solution of 50% formamide containing 6× standard saline citrate, at 48 C for 40 hr, was judged to be the best set of conditions tested based on relatively good retention of immobilized DNA, very low hybridization with unrelated DNA of a similarly high Tm (from Sarcina lutea), and the formation of complexes similar in thermal stability to the native DNA. The expression of results as sheared DNA bound in relation to long-chain DNA retained is recommended when a high concentration of sheared DNA relative to immobilized DNA is used.  相似文献   

18.
1. Rapidly labelled RNA from Escherichia coli K 12 was characterized by hybridization to denatured E. coli DNA on cellulose nitrate membrane filters. The experiments were designed to show that, if sufficient denatured DNA is offered in a single challenge, practically all the rapidly labelled RNA will hybridize. With the technique employed, 75-80% hybridization efficiency could be obtained as a maximum. Even if an excess of DNA sites were offered, this value could not be improved upon in any single challenge of rapidly labelled RNA with denatured E. coli DNA. 2. It was confirmed that the hybridization technique can separate the rapidly labelled RNA into two fractions. One of these (30% of the total) was efficiently hybridized with the low DNA/RNA ratio (10:1, w/w) used in tests. The other fraction (70% of the total) was hybridized to DNA at low efficiencies with the DNA/RNA ratio 10:1, and was hybridized progressively more effectively as the amount of denatured DNA was increased. A practical maximum of 80% hybridization of all the rapidly labelled RNA was first achieved at a DNA/RNA ratio 210:1 (+/-10:1). This fraction was fully representative of the rapidly labelled RNA with regard to kind and relative amount of materials hybridized. 3. In competition experiments, where additions were made of unlabelled RNA prepared from E. coli DNA, DNA-dependent RNA polymerase (EC 2.7.7.6) and nucleoside 5'-triphosphates, the rapidly labelled RNA fraction hybridized at a low (10:1) DNA/RNA ratio was shown to be competitive with a product from genes other than those responsible for ribosomal RNA synthesis and thus was presumably messenger RNA. At higher DNA/rapidly labelled RNA ratios (200:1), competition with added unlabelled E. coli ribosomal RNA (without messenger RNA contaminants) lowered the hybridization of the rapidly labelled RNA from its 80% maximum to 23%. This proportion of rapidly labelled RNA was not competitive with E. coli ribosomal RNA even when the latter was in large excess. The ribosomal RNA would also not compete with the 23% rapidly labelled RNA bound to DNA at low DNA/RNA ratios. It was thus demonstrated that the major part of E. coli rapidly labelled RNA (70%) is ribosomal RNA, presumably a precursor to the RNA in mature ribosomes. 4. These studies have shown that, when earlier workers used low DNA/RNA ratios (about 10:1) in the assay of messenger RNA in bacterial rapidly labelled RNA, a reasonable estimate of this fraction was achieved. Criticisms that individual messenger RNA species may be synthesized from single DNA sites in E. coli at rates that lead to low efficiencies of messenger RNA binding at low DNA/RNA ratios are refuted. In accordance with earlier results, estimations of the messenger RNA content of E. coli in both rapidly labelled and randomly labelled RNA show that this fraction is 1.8-1.9% of the total RNA. This shows that, if any messenger RNA of relatively long life exists in E. coli, it does not contribute a measurable weight to that of rapidly labelled messenger RNA.  相似文献   

19.
Li S  Pozhitkov A  Brouwer M 《Physical biology》2010,7(4):048001; discussion 048002
Understanding the difference in probe properties holds the key to absolute quantification of DNA microarrays. So far, Langmuir-like models have failed to link sequence-specific properties to hybridization signals in the presence of a complex hybridization background. Data from washing experiments indicate that the post-hybridization washing has no major effect on the specifically bound targets, which give the final signals. Thus, the amount of specific targets bound to probes is likely determined before washing, by the competition against nonspecific binding. Our competitive hybridization model is a viable alternative to Langmuir-like models.  相似文献   

20.
A new method of DNA sequencing by hybridization using a microchip containing a set of immobilized oligonucleotides is being developed. A theoretical analysis is presented of the kinetics of DNA hybridization with deoxynucleotide molecules chemically tethered in a polyacrylamide gel layer. The analysis has shown that long-term evolution of the spatial distribution and of the amount of DNA bound in a hybridization cell is governed by "retarded diffusion," i.e., diffusion of the DNA interrupted by repeated association and dissociation with immobile oligonucleotide molecules. Retarded diffusion determines the characteristic time of establishing a final equilibrium state in a cell, i.e., the state with the maximum quantity and a uniform distribution of bound DNA. In the case of cells with the most stable, perfect duplexes, the characteristic time of retarded diffusion (which is proportional to the equilibrium binding constant and to the concentration of binding sites) can be longer than the duration of the real hybridization procedure. This conclusion is indirectly confirmed by the observation of nonuniform fluorescence of labeled DNA in perfect-match hybridization cells (brighter at the edges). For optimal discrimination of perfect duplexes from duplexes with mismatches the hybridization process should be brought to equilibrium under low-temperature nonsaturation conditions for all cells. The kinetic differences between perfect and nonperfect duplexes in the gel allow further improvement in the discrimination through additional washing at low temperature after hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号