首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
GABA(A) receptors are critical mediators of fast synaptic inhibition in the brain, and the predominant receptor subtype in the central nervous system is believed to be a pentamer composed of alpha, beta, and gamma subunits. Previous studies on recombinant receptors have shown that protein kinase C (PKC) and PKA directly phosphorylate intracellular serine residues within the receptor beta subunit and modulate receptor function. However, the relevance of this regulation for neuronal receptors remains poorly characterized. To address this critical issue, we have studied phosphorylation and functional modulation of GABA(A) receptors in cultured cortical neurons. Here we show that the neuronal beta3 subunit is basally phosphorylated on serine residues by a PKC-dependent pathway. PKC inhibitors abolish basal phosphorylation, increasing receptor activity, whereas activators of PKC enhance beta3 phosphorylation with a concomitant decrease in receptor activity. PKA activators were shown to increase the phosphorylation of the beta3 subunit only in the presence of PKC inhibitors. We also show that the main sites of phosphorylation within the neuronal beta3 subunit are likely to include Ser-408 and Ser-409, residues that are important for the functional modulation of beta3-containing recombinant receptors. Furthermore, PKC activation did not change the total number of GABA(A) receptors in the plasma membrane, suggesting that the effects of PKC activation are on the gating or conductance of the channel. Together, these results illustrate that cell-signaling pathways that activate PKC may have profound effects on the efficacy of synaptic inhibition by directly modulating GABA(A) receptor function.  相似文献   

2.
3.
4.
A serine protein kinase that phosphorylates the beta-subunit of the insulin receptor has been partially purified 5,000-fold from HeLa cell membranes. The enzyme has been purified by ion-exchange and hydroxylapatite chromatography and sucrose gradient centrifugation; it has an apparent molecular weight of 36,000-43,000 daltons. It exhibits the following properties: (a) it catalyzes the phosphorylation of the autophosphorylated insulin receptor more efficiently than the nonautophosphorylated insulin receptor, (b) it decreases insulin receptor phosphorylation of tubulin but has no effect on insulin receptor phosphorylation of microtubule-associated proteins or reduced and carboxyamidomethylated lysozyme. The enzyme also phosphorylates casein and ribosomal protein S6 and shares many properties with casein kinase I: (a) similar molecular weight, (b) utilization of ATP but not GTP as phosphoryl donor, and (c) sensitivity to inhibition by heparin. Based on several criteria the receptor serine kinase is neither protein kinase C nor the cAMP-dependent protein kinase.  相似文献   

5.
Wang Q  Liu L  Pei L  Ju W  Ahmadian G  Lu J  Wang Y  Liu F  Wang YT 《Neuron》2003,38(6):915-928
Akt (also known as PKB), a serine/threonine kinase involved in diverse signal-transduction pathways, is highly expressed in the brain. Akt is known to have a strong antiapoptotic action and thereby to be critically involved in neuronal survival, but its potential role in the dynamic modulation of synaptic transmission is unknown. Here we report that Akt phosphorylates, both in vitro and in vivo, the type A gamma-aminobutyric acid receptor (GABA(A)R), the principal receptor mediating fast inhibitory synaptic transmission in the mammalian brain. Akt-mediated phosphorylation increases the number of GABA(A)Rs on the plasma membrane surface, thereby increasing the receptor-mediated synaptic transmission in neurons. These results identify the GABA(A)R as a novel substrate of Akt, thereby linking Akt to the regulation of synaptic strength. This work also provides evidence for the rapid regulation of neurotransmitter receptor numbers in the postsynaptic domain by direct receptor phosphorylation as an important means of producing synaptic plasticity.  相似文献   

6.
Tonic inhibition in the brain is mediated largely by specialized populations of extrasynaptic receptors, γ-aminobutyric acid receptors (GABA(A)Rs). In the dentate gyrus region of the hippocampus, tonic inhibition is mediated primarily by GABA(A)R subtypes assembled from α4β2/3 with or without the δ subunit. Although the gating of these receptors is subject to dynamic modulation by agents such as anesthetics, barbiturates, and neurosteroids, the cellular mechanisms neurons use to regulate their accumulation on the neuronal plasma membrane remain to be determined. Using immunoprecipitation coupled with metabolic labeling, we demonstrate that the α4 subunit is phosphorylated at Ser(443) by protein kinase C (PKC) in expression systems and hippocampal slices. In addition, the β3 subunit is phosphorylated on serine residues 408/409 by PKC activity, whereas the δ subunit did not appear to be a PKC substrate. We further demonstrate that the PKC-dependent increase of the cell surface expression of α4 subunit-containing GABA(A)Rs is dependent on Ser(443). Mechanistically, phosphorylation of Ser(443) acts to increase the stability of the α4 subunit within the endoplasmic reticulum, thereby increasing the rate of receptor insertion into the plasma membrane. Finally, we show that phosphorylation of Ser(443) increases the activity of α4 subunit-containing GABA(A)Rs by preventing current run-down. These results suggest that PKC-dependent phosphorylation of the α4 subunit plays a significant role in enhancing the cell surface stability and activity of GABA(A)R subtypes that mediate tonic inhibition.  相似文献   

7.
8.
9.
Tu H  Rondard P  Xu C  Bertaso F  Cao F  Zhang X  Pin JP  Liu J 《Cellular signalling》2007,19(9):1996-2002
gamma-aminobutyric acid type B (GABA(B)) receptor is an allosteric complex made of two subunits, GABA(B1) and GABA(B2). GABA(B2) plays a major role in the coupling to G protein whereas GABA(B1) binds GABA. It has been shown that GABA(B) receptor activates ERK(1/2) in neurons of the central nervous system, but the molecular mechanisms underlying this event are poorly characterized. Here, we demonstrate that activation of GABA(B) receptor by either GABA or the selective agonist baclofen induces ERK(1/2) phosphorylation in cultured cerebellar granule neurons. We also show that CGP7930, a positive allosteric regulator specific of GABA(B2), alone can induce the phosphorylation of ERK(1/2). PTX, a G(i/o) inhibitor, abolishes both baclofen and CGP7930-mediated-ERK(1/2) phosphorylation. Moreover, both baclofen and CGP7930 induce ERK-dependent CREB phosphorylation. Furthermore, by using LY294002, a PI-3 kinase inhibitor, and a C-term of GRK-2 that has been reported to sequester Gbetagamma subunits, we demonstrate the role of Gbetagamma in GABA(B) receptor-mediated-ERK(1/2) phosphorylation. In conclusion, the activation of GABA(B) receptor leads to ERK(1/2) phosphorylation via the coupling of GABA(B2) to G(i/o) and by releasing Gbetagamma subunits which in turn induce the activation of CREB. These findings suggest a role of GABA(B) receptor in long-term change in the central nervous system.  相似文献   

10.
GABA is a dominant inhibitory neurotransmitter in the brain and A type GABA receptor (GABAAR) phosphorylation is critical for GABA-mediated inhibitory effect. However, its role in the neuroprotective effect of sodium valproate (VPA), a prevalent drug for treating patients with epilepsy, remains elusive. The present study was conducted to explore the role of GABAAR phosphorylation in the neuroprotection of VPA against a kainic acid-induced epileptic rat model and the potential molecular mechanisms. Neuronal apoptosis was evaluated by TUNEL assay, PI/Annexin V double staining, caspase-3 activity detection and Bax and Bcl-2 proteins expression via Western blot analysis. The primary rat hippocampal neurons were cultivated and cell viability was measured by CCK8 detection following KA- or free Mg2+-induced neuronal impairment. Our results found that VPA treatment significantly reduced neuronal apoptosis in the KA-induced rat model (including reductions of TUNEL-positive cells, caspase-3 activity and Bax protein expression, and increase of Bcl-2 protein level). In the in vitro experiments, VPA at the concentration of 1 mM for 24 h also increased cell survival and suppressed cell apoptosis in KA- or no Mg2+-induced models via CCK8 assay and PI/Annexin V double staining, respectively. What is more important, the phosphorylation of γ2 subunit at serine 327 residue for GABAAR was found to be robustly enhanced both in the KA-induced epileptic rat model and neuronal cultures following KA exposure after VPA treatment, while no evident alteration was found in terms of GABAAR β3 phosphorylation (408 or 409 serine residue). Additionally, pharmacological inhibition of protein kinase C (PKC) clearly abrogated the neuroprotective potential of VPA against KA- or free Mg2+-associated neuronal injury, indicating a critical role of PKC in the effect of GABAAR γ2 serine 327 phosphorylation in VPA’s protection. In summary, our work reveals that VPA mitigates neuronal apoptosis in KA-triggered epileptic seizures, at least, via augmenting PKC-dependent GABAAR γ2 phosphorylation at serine 327 residue.  相似文献   

11.
Ethanol enhances gamma-aminobutyrate (GABA) signaling in the brain, but its actions are inconsistent at GABA(A) receptors, especially at low concentrations achieved during social drinking. We postulated that the epsilon isoform of protein kinase C (PKCepsilon) regulates the ethanol sensitivity of GABA(A) receptors, as mice lacking PKCepsilon show an increased behavioral response to ethanol. Here we developed an ATP analog-sensitive PKCepsilon mutant to selectively inhibit the catalytic activity of PKCepsilon. We used this mutant and PKCepsilon(-/-) mice to determine that PKCepsilon phosphorylates gamma2 subunits at serine 327 and that reduced phosphorylation of this site enhances the actions of ethanol and benzodiazepines at alpha1beta2gamma2 receptors, which is the most abundant GABA(A) receptor subtype in the brain. Our findings indicate that PKCepsilon phosphorylation of gamma2 regulates the response of GABA(A) receptors to specific allosteric modulators, and, in particular, PKCepsilon inhibition renders these receptors sensitive to low intoxicating concentrations of ethanol.  相似文献   

12.
The insulin receptor: structure and function   总被引:7,自引:0,他引:7  
Promising progress in understanding the molecular basis of insulin action has been achieved by demonstrating that the insulin receptor is an insulin-sensitive tyrosine kinase. Here we discuss the structure of this receptor kinase and compare it with receptors for related growth factors. We review the known modes to regulate the receptor kinase activity, either through its autophosphorylation (on tyrosine residues) or through its phosphorylation by other kinases (on serine and threonine residues). We discuss the role of the receptor kinase activity in hormone signal transduction in light of results indicating a reduced kinase activity in insulin-resistant states. Finally, studies to identify natural substrates for the insulin receptor kinase are presented. The possible physiological role of these phosphorylated substrates in mediating insulin action is evaluated.  相似文献   

13.
T Luo  J R Downing    J V Garcia 《Journal of virology》1997,71(3):2535-2539
The nef gene of the human and simian immunodeficiency viruses (HIV and SIV) encodes a 27 to 34 kDa myristoylated protein that induces downregulation of CD4 from the cell surface and enhances virus infectivity. As shown by experiments on SIV-infected adult macaques, Nef is important in pathogenesis and disease progression. In vitro, protein kinase C (PKC) phosphorylates Nef, but the role of phosphorylation in the function and expression of this protein has not yet been determined. Here we show that in HIV type 1-infected cells, phosphorylation of Nef increased 8- to 12-fold after treatment with phorbol myristate acetate and phytohemagglutinin (PMA/PHA). Basal and PMA/PHA-induced phosphorylation occurred on serine residues of Nef and was independent of other HIV proteins. The PMA/PHA-induced phosphorylation of Nef was inhibited by bisindolylmaleimide I, a potent and specific inhibitor of PKC, but was unaffected by H89, an inhibitor of protein kinase A. In contrast, treatment with bisindolylmaleimide I did not affect the basal level of Nef phosphorylation, suggesting two different phosphorylation pathways. A PMA-insensitive CD4 mutant in which three serine residues in the cytoplasmic domain have been replaced by alanines was used to determine whether PMA-induced phosphorylation affects Nef-induced CD4 downregulation. In Nef-expressing cells, treatment with PMA enhanced downregulation of the CD4 serine triple mutant from the cell surface, suggesting that phosphorylation is important for Nef function.  相似文献   

14.
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.  相似文献   

15.
Adenovirus E1A is associated with a serine/threonine protein kinase.   总被引:17,自引:6,他引:11       下载免费PDF全文
C H Herrmann  L K Su    E Harlow 《Journal of virology》1991,65(11):5848-5859
The adenovirus E1A proteins form stable protein complexes with a number of cellular proteins, including cyclin A and the product of the retinoblastoma susceptibility gene. We have been interested in learning about the function of proteins associated with E1A and therefore looked for an enzymatic activity present in E1A complexes. We found a serine/threonine kinase activity that phosphorylates two proteins bound to E1A, the 107- and 130-kDa (107K and 130K) proteins. The kinase also phosphorylates histone H1 added as an exogenous substrate. The kinase activity is cell cycle regulated, being most active in S and G2/M-phase cells. The timing of phosphorylation of the 107K protein in vitro correlates with the phosphorylation pattern of the 107K protein in vivo. A variety of genetic and immunochemical approaches indicate that the activity is probably not due to the E1A-associated 300K, 130K, 107K, or pRB protein. Although we have not established the identity of the kinase, we present evidence that the kinase activity is consistent with phosphorylation by p34cdc2 or a related kinase.  相似文献   

16.
A soluble protein kinase that phosphorylates the last serine residue (Ser-833) in the cytoplasmic domain of the low density lipoprotein (LDL) receptor was purified about 1300-fold from the cytosol of bovine adrenal cortex. The LDL receptor kinase shared several properties with casein kinase II: use of either GTP or ATP; phosphorylation of a typical casein kinase II recognition sequence in the LDL receptor (a serine followed by a cluster of three negatively charged amino acids); and inhibition by heparin. The LDL receptor kinase differed from classic casein kinase II in the following respects: its apparent molecular weight on gel filtration was approximately 500,000 as opposed to the usual molecular weight of 130,000 for casein kinase II; its affinity for the LDL receptor (apparent Km approximately 5 nM) was much greater than its affinity for casein (approximately 10 microM); and its activity was inhibited by polylysine, an agent that stimulates casein kinase II. The physiologic role of this unusual kinase, if any, is unknown.  相似文献   

17.
18.
The lymphocyte-specific protein-tyrosine kinase Lck plays a critical role in T cell activation. In response to T cell antigen receptor binding Lck undergoes phosphorylation on serine residues that include serines 59 and 194. Serine 59 is phosphorylated by ERK mitogen-activated protein kinase. Recently, we showed that in mitotic T cells Lck becomes hyper-phosphorylated on serine residues. In this report, using one-dimensional phosphopeptide mapping analysis, we identify serine 59 as a site of in vivo mitotic phosphorylation in Lck. The mitotic phosphorylation of serine 59 did not require either the catalytic activity or functional SH2 or SH3 domains of Lck. In addition, the presence of ZAP-70 also was dispensable for the phosphorylation of serine 59. Although previous studies demonstrated that serine 59 is a substrate for the ERK MAPK pathway, inhibitors of this pathway did not block the mitotic phosphorylation of serine 59. These results identify serine 59 as a site of mitotic phosphorylation in Lck and suggest that a pathway distinct from that induced by antigen receptor signaling is responsible for its phosphorylation. Thus, the phosphorylation of serine 59 is the result of two distinct signaling pathways, differentially activated in response to the physiological state of the T cell.  相似文献   

19.
Phosphorylation of Tau at serine 422 promotes Tau aggregation. The kinase that is responsible for this key phosphorylation event has so far not been identified but could be a potential drug target for Alzheimer's disease. We describe here an assay strategy to identify this kinase. Using a combination of screening a library of 65'000 kinase inhibitors and in vitro inhibitor target profiling of the screening hits using the Ambit kinase platform, MKK4 was identified as playing a key role in Tau-S422 phosphorylation in human neuroblastoma cells.  相似文献   

20.
Inositol 1,4,5-trisphosphate (IP3) releases internal stores of calcium by binding to a specific membrane receptor which includes both the IP3 recognition site as well as the associated calcium channel. The IP3 receptor is regulated by ATP, calcium, and phosphorylation by protein kinase A, protein kinase C, and calcium/calmodulin-dependent protein kinase II. Its cDNA sequence predicts at least two consensus sequences where nucleotides might bind, and direct binding of ATP to the IP3 receptor has been demonstrated. In the present study, we demonstrate autophosphorylation of the purified and reconstituted IP3 receptor on serine and find serine protein kinase activity of the IP3 receptor toward a specific peptide substrate. Several independent purification procedures do not separate the IP3 receptor protein from the phosphorylating activity, and many different protein kinase activators and inhibitors do not identify protein kinases as contaminants. Also, renaturation experiments reveal autophosphorylation of the monomeric receptor on polyvinylidene difluoride membranes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号