首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The filamentous fungus Sordaria macrospora forms complex three-dimensional fruiting bodies that protect the developing ascospores and ensure their proper discharge. Several regulatory genes essential for fruiting body development were previously isolated by complementation of the sterile mutants pro1, pro11 and pro22. To establish the genetic relationships between these genes and to identify downstream targets, we have conducted cross-species microarray hybridizations using cDNA arrays derived from the closely related fungus Neurospora crassa and RNA probes prepared from wild-type S. macrospora and the three developmental mutants. Of the 1,420 genes which gave a signal with the probes from all the strains used, 172 (12%) were regulated differently in at least one of the three mutants compared to the wild type, and 17 (1.2%) were regulated differently in all three mutant strains. Microarray data were verified by Northern analysis or quantitative real time PCR. Among the genes that are up- or down-regulated in the mutant strains are genes encoding the pheromone precursors, enzymes involved in melanin biosynthesis and a lectin-like protein. Analysis of gene expression in double mutants revealed a complex network of interaction between the pro gene products.  相似文献   

2.
A new deletion allele of the APETALA1 (AP1) gene encoding a type II MADS-box protein with the key role in the initiation of flowering and development of perianth organs has been identified in A. thaliana. The deletion of seven amino acids in the conserved region of the K domain in the ap1-20 mutant considerably delayed flowering and led to a less pronounced abnormality in the corolla development compared to the weak ap1-3 and intermediate ap1-6 alleles. At the same time, a considerable stamen reduction has been revealed in ap1-20 as distinct from ap1-3 and ap1-6 alleles. These data indicate that the K domain of AP1 can be crucial for the initiation of flowering and expression regulation of B-class genes controlling stamen development.  相似文献   

3.
Vo MT  Lee KW  Kim TK  Lee YH 《Biotechnology letters》2007,29(12):1915-1920
The fadBA operon in the fatty acid β-oxidation pathway of P. putida KCTC1639 was blocked to induce a metabolic flux of the intermediates to the biosynthesis of medium chain-length PHA (mcl-PHA). Succinate at 150 mg l−1 stimulated cell growth and also the biosynthesis of medium chain-length-polyhydroxyalkanoate. pH-stat fed-batch cultivation of the fadA knockout mutant P. putida KCTC1639 was carried out for 60 h, in which mcl-PHA reached 8 g l−1 with a cell dry weight of 10.3 g l−1.  相似文献   

4.
The maT clade of transposons is a group of transposable elements intermediate in sequence and predicted protein structure to mariner and Tc transposons, with a distribution thus far limited to a few invertebrate species. We present evidence, based on searches of publicly available databases, that the nematode Caenorhabditis briggsae has several maT-like transposons, which we have designated as CbmaT elements, dispersed throughout its genome. We also describe two additional transposon sequences that probably share their evolutionary history with the CbmaT transposons. One resembles a fold back variant of a CbmaT element, with long (380-bp) inverted terminal repeats (ITRs) that show a high degree (71%) of identity to CbmaT1. The other, which shares only the 26-bp ITR sequences with one of the CbmaT variants, is present in eight nearly identical copies, but does not have a transposase gene and may therefore be cross mobilised by a CbmaT transposase. Using PCR-based mobility assays, we show that CbmaT1 transposons are capable of excising from the C. briggsae genome. CbmaT1 excised approximately 500 times less frequently than Tcb1 in the reference strain AF16, but both CbmaT1 and Tcb1 excised at extremely high frequencies in the HK105 strain. The HK105 strain also exhibited a high frequency of spontaneous induction of unc-22 mutants, suggesting that it may be a mutator strain of C. briggsae.  相似文献   

5.
Rhizoctonia solani and Phytophthora capsici are two of the most destructive phytopathogens occurring worldwide and are only partly being managed by traditional control strategies. Fluorescent Pseudomonas isolates PGC1 and PGC2 were checked for the antifungal potential against R. solani and P. capsici. Both the isolates were screened for the ability to produce a range of antifungal compounds. The results of this study indicated the role of chitinase and β-1,3-glucanase in the inhibition of R. solani, however, antifungal metabolites of a non-enzymatic nature were responsible for inhibition of P. capsici. The study confirmed that multiple and diverse mechanisms are adopted by the same antagonist to suppress different phytopathogens, as evidenced in case of R. solani and P. capsici.  相似文献   

6.
7.
Four species belonging to Kickxellales (Kickxellomycotina) isolated from soil of Indonesia are described and illustrated. Two new species of Coemansia, C. asiatica and C. javaensis, were discovered in South Sulawesi and West Java, and two known species of Linderina, L. pennispora and L. macrospora, were discovered in East Kalimantan and South Sulawesi, respectively. These four species are newly added to the Indonesian mycobiota. A technique for inducing sporulation of C. javaensis and L. macrospora by adding substances derived from invertebrates such as aphids, nereids, or cladocerans to culture media is described.  相似文献   

8.
The entire (e) locus of tomato (Solanum lycopersicum L.) controls leaf morphology. Dominant E and recessive e allele of the locus produce pinnate compound and complex reduced leaves. Previous research had indicated that SlIAA9, an Aux/IAA gene, was involved in tomato leaf morphology. Down-regulation of SlIAA9 gene by antisense transgenic method decreased the leaf complex of tomato and converted tomato compound leaves to simple leaves. The leaf morphology of these transgenic lines was similar with leaf morphology of tomato entire mutant. In this paper, we report that a single-base deletion mutation in the coding region of SlIAA9 gene results in tomato entire mutant phenotypes.  相似文献   

9.
It is known that a mutation in the pcc1 gene of the homobasidiomycete Coprinopsis cinerea leads to pseudoclamp development and fruit-body formation in a homokaryon without mating. In this study we characterize two strains that were reported previously to exhibit pseudoclamp development and fruiting without mating, together with six new mutants exhibiting the same phenotype. A frame-shift, nonsense, or intron splice site mutation was present within pcc1 in each of the eight mutants. The results suggest that the Pcc1 protein is a key element in a pathway(s) leading to pseudoclamp development and fruiting.  相似文献   

10.
Methyl oleate was used as a primary carbon source and as an alternative inducer for the production of an extracellular lipase, Lip2, in Y. lipolytica strain LgX64.81 grown in a 20-l bioreactor. The lipase-encoding gene, LIP2, was investigated during culture on methyl oleate using a pLIP2LacZ reporter fusion and we provide evidence for the involvement of methyl oleate in its regulation. Revisions requested 7 July 2005; Revisions received 30 August 2005  相似文献   

11.
Dioscorea zingiberensis Wright has been cultivated as a pharmaceutical crop for production of diosgenin, a precursor for synthesis of various important steroid drugs. Because breeding of D. zingiberensis through sexual hybridization is difficult due to its unstable sexuality and differences in timing of flowering in male and female plants, gene transfer approaches may play a vital role in its genetic improvement. In this study, the Agrobacterium tumefaciens-mediated transformation of D. zingiberensis was investigated with leaves and calli as explants. The results showed that both leaf segments and callus pieces were sensitive to 30 mg/l hygromycin and 50–60 mg/l kanamycin, and using calli as explants and addition of acetosyringone (AS) in cocultivation medium were crucial for successful transformation. We first immersed callus explants in A. tumefaciens cells for 30 min and then transferred the explants onto a co-cultivation medium supplemented with 200 μM AS for 3 days. Three days after, we cultured the infected explants on a selective medium containing 50 mg/l kanamycin and 100 mg/l timentin for formation of kanamycin-resistant calli. After the kanamycin-resistant calli were produced, we transferred them onto fresh selective medium for shoot induction. Finally, the kanamycin resistant shoots were rooted and the stable incorporation of the transgene into the genome of D. zingiberensis plants was confirmed by GUS histochemical assay, PCR and Southern blot analyses. The method reported here can be used to produce transgenic D. zingiberensis plants in 5 months and the transformation frequency is 24.8% based on the numbers of independent transgenic plants regenerated from initial infected callus explants.  相似文献   

12.
Hao da C  Yang L  Huang B 《Genetica》2009,135(2):123-135
Evolutionary patterns of sequence divergence were analyzed in genes from the conifer genus Taxus (yew), encoding paclitaxel biosynthetic enzymes taxadiene synthase (TS) and 10-deacetylbaccatin III-10β-O-acetyltransferase (DBAT). N-terminal fragments of TS, full-length DBAT and internal transcribed spacer (ITS) were amplified from 15 closely related Taxus species and sequenced. Premature stop codons were not found in TS and DBAT sequences. Codon usage bias was not found, suggesting that synonymous mutations are selectively neutral. TS and DBAT gene trees are not consistent with the ITS tree, where species formed monophyletic clades. In fact, for both genes, alleles were sometimes shared across species and parallel amino acid substitutions were identified. While both TS and DBAT are, overall, under purifying selection, we identified a number of amino acids of TS under positive selection based on inference using maximum likelihood models. Positively selected amino acids in the N-terminal region of TS suggest that this region might be more important for enzyme function than previously thought. Moreover, we identify lineages with significantly elevated rates of amino acid substitution using a genetic algorithm. These findings demonstrate that the pattern of adaptive paclitaxel biosynthetic enzyme evolution can be documented between closely related Taxus species, where species-specific taxane metabolism has evolved recently.  相似文献   

13.
This work assessed the effect of the overexpression of ADH1 and HXT1 genes in the Saccharomyces cerevisiae AR5 strain during fermentation of Agave tequilana Weber blue variety must. Both genes were cloned individually and simultaneously into a yeast centromere plasmid. Two transformant strains overexpressing ADH1 and HXT1 individually and one strain overexpressing both genes were randomly selected and named A1, A3 and A5 respectively. Overexpression effect on growth and ethanol production of the A1, A3 and A5 strains was evaluated in fermentative conditions in A. tequilana Weber blue variety must and YPD medium. During growth in YPD and Agave media, all the recombinant strains showed lower cell mass formation than the wild type AR5 strain. Adh enzymatic activity in the recombinant strains A1 and A5 cultivated in A. tequilana and YPD medium was higher than in the wild type. The overexpression of both genes individually and simultaneously had no significant effect on ethanol formation; however, the fermentative efficiency of the A5 strain increased from 80.33% to 84.57% and 89.40% to 94.29% in YPD and Agave medium respectively.  相似文献   

14.
Polymerase chain reaction fragment length polymorphisms and nucleotide sequences for a cytochrome P450 gene encoding flavonoid-3',5'-hydroxylase, Hf1, were studied in 19 natural taxa of Petunia. Natural Petunia taxa were classified into six groups based on major insertion or deletion events that occurred only in intron II of the locus. The maximum parsimony method was used to calculate strict consensus trees based on nucleotide sequences in selected regions of the Hf1 locus. Petunia taxa were divided into two major clades in the phylogenetic trees. Petunia axillaris (including three subspecies), P. exserta, and P. occidentalis formed a clade with 100% bootstrap support. This clade is associated with a consistently inflexed pedicel, self-compatibility in most taxa, and geographical distribution in southern and western portions of the genus range. The other clade, which comprised the remainder of the genus is, however, less supported (up to 71% bootstrap); it is characterized by a deflexed pedicel in the fruiting state (except P. inflata), self-incompatibility, and a northeastern distribution. A nuclear gene, Hf1, seems to be a useful molecular marker for elucidating the phylogeny of the genus Petunia when compared with the nucleotide sequence of trnK intron of chloroplast DNA.  相似文献   

15.
16.
A β-N-acetylglucosaminidase produced by a novel fungal source, the moderately thermophilic aerobic ascomycete Talaromyces emersonii, was purified to apparent homogeneity. Submerged fermentation of T. emersonii, in liquid medium containing algal fucoidan as the main carbon source, yielded significant amounts of extracellular N-acetylglucosaminidase activity. The N-acetylglucosaminidase present in the culture-supernatant was purified by hydrophobic interaction chromatography and preparative electrophoresis. The enzyme is a dimer with molecular weight and pI values of 140 and 3.85, respectively. Substrate specificity studies confirmed the glycan specificity of the enzyme for N-acetylglucosamine. Michaelis-Menten kinetics were observed during enzyme-catalyzed hydrolysis of the fluorescent substrate methylumbelliferyl-β-D-N-acetylglucosaminide at 50°C, pH 5.0 (Km value of 0.5 mM). The purified N-acetylglucosaminidase displayed activity over broad ranges of pH and temperature, yielding respective optimum values of pH 5.0 and 75°C. The T. emersonii enzyme was less susceptible to inhibition by N-acetylglucosamine and other related sugars than orthologs from other sources. The enzyme was sensitive to Hg2+, Co2+ and Fe3+.  相似文献   

17.
Three methods of transformation of pea (Pisum sativum ssp. sativum L. var. medullare) were tested. The most efficient Agrobacterium tumefaciens-mediated T-DNA transfer was obtained using embryonic segments from mature pea seeds as initial explants. The transformation procedure was based on the transfer of the T-DNA region with the reporter gene uidA and selection gene bar. The expression of β-glucuronidase (GUS) in the regenerated shoots was tested using the histochemical method and the shoots were selected on a medium containing phosphinothricin (PPT). The shoots of putative transformants were rooted and transferred to non-sterile conditions. Transient expression of the uidA gene in the tissues after co-cultivation and in the course of short-term shoot cultivation (confirmed by histochemical analysis of GUS and by RT-PCR of mRNA) was achieved; however, we have not yet succeeded in proving stable incorporation of the transgene in the analysed plants.  相似文献   

18.
19.
We isolated several mutants of Arabidopsis thaliana (L.) Heynh. that accumulated less anthocyanin in the plant tissues, but had seeds with a brown color similar to the wild-type. These mutants were allelic with the anthocyaninless1 (anl1) mutant that has been mapped at 15.0 cM of chromosome 5. We performed fine mapping of the anl1 locus and determined that ANL1 is located between the nga106 marker and a marker corresponding to the MKP11 clone. About 70 genes are located between these two markers, including three UDP-glucose:flavonoid-3-O-glucosyltransferase-like genes and a glutathione transferase gene (TT19). A mutant of one of the glucosyltransferase genes (At5g17050) was unable to complement the anl1 phenotype, showing that the ANL1 gene encodes UDP-glucose:flavonoid-3-O-glucosyltransferase. ANL1 was expressed in all tissues examined, including rosette leaves, stems, flower buds and roots. ANL1 was not regulated by TTG1.  相似文献   

20.
The gene encoding malate dehydrogenase (MDH) was overexpressed in a pflB ldhA double mutant of Escherichia coli, NZN111, for succinic acid production. With MDH overexpression, NZN111/pTrc99A-mdh restored the ability to metabolize glucose anaerobically and 0.55 g/L of succinic acid was produced from 3 g/L of glucose in shake flask culture. When supplied with 10 g/L of sodium bicarbonate (NaHCO3), the succinic acid yield of NZN111/pTrc99A-mdh reached 1.14 mol/mol glucose. Supply of NaHCO3 also improved succinic acid production by the control strain, NZN111/pTrc99A. Measurement of key enzymes activities revealed that phosphoenolpyruvate (PEP) carboxykinase and PEP carboxylase in addition to MDH played important roles. Two-stage culture of NZN111/pTrc99A-mdh was carried out in a 5-L bioreactor and 12.2 g/L of succinic acid were produced from 15.6 g/L of glucose. Fed-batch culture was also performed, and the succinic acid concentration reached 31.9 g/L with a yield of 1.19 mol/mol glucose.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号