首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Silflow CD  Sun X  Haas NA  Foley JW  Lefebvre PA 《Genetics》2011,189(4):1249-1260
Mutations at the APM1 and APM2 loci in the green alga Chlamydomonas reinhardtii confer resistance to phosphorothioamidate and dinitroaniline herbicides. Genetic interactions between apm1 and apm2 mutations suggest an interaction between the gene products. We identified the APM1 and APM2 genes using a map-based cloning strategy. Genomic DNA fragments containing only the DNJ1 gene encoding a type I Hsp40 protein rescue apm1 mutant phenotypes, conferring sensitivity to the herbicides and rescuing a temperature-sensitive growth defect. Lesions at five apm1 alleles include missense mutations and nucleotide insertions and deletions that result in altered proteins or very low levels of gene expression. The HSP70A gene, encoding a cytosolic Hsp70 protein known to interact with Hsp40 proteins, maps near the APM2 locus. Missense mutations found in three apm2 alleles predict altered Hsp70 proteins. Genomic fragments containing the HSP70A gene rescue apm2 mutant phenotypes. The results suggest that a client of the Hsp70-Hsp40 chaperone complex may function to increase microtubule dynamics in Chlamydomonas cells. Failure of the chaperone system to recognize or fold the client protein(s) results in increased microtubule stability and resistance to the microtubule-destabilizing effect of the herbicides. The lack of redundancy of genes encoding cytosolic Hsp70 and Hsp40 type I proteins in Chlamydomonas makes it a uniquely valuable system for genetic analysis of the function of the Hsp70 chaperone complex.  相似文献   

2.
S. W. James  P. A. Lefebvre 《Genetics》1992,130(2):305-314
We previously described two types of genetic interactions among recessive mutations in the APM1 and APM2 loci of Chlamydomonas reinhardtii that may reflect a physical association of the gene products or their involvement in a common structure/process: (1) allele-specific synthetic lethality, and (2) unlinked noncomplementation, or dominant enhancement. To further investigate these interactions, we isolated revertants in which the heat sensitivity caused by the apm2-1 mutation is lost. The heat-insensitive revertants were either fully or partially suppressed for the drug-resistance caused by the apm2-1 allele. In recombination tests the revertants behaved as if the suppressing mutation mapped within the APM2 locus; the partial suppressors of apm2-1 herbicide resistance failed to complement apm2-1, leading to the conclusion that they were likely to be intragenic pseudorevertants. The apm2-1 partial suppressor mutations reversed apm1-apm2-1 synthetic lethality in an allele-specific manner with respect both to apm1- alleles and apm2-1 suppressor mutations. Those apm1- apm2-1rev strains that regained viability also regained heat sensitivity characteristic of the original apm2-1 mutation, even though the apm2-1 suppressor strains were fully heat-insensitive. The Hs+ phenotypes of apm2-1 partial suppressors were also reversed by treatment with the microtubule-stabilizing agent deuterium oxide (D2O). In addition to the above interactions, we observed interallelic complementation and phenotypic enhancement of temperature conditionality among apm1- alleles. Evidence of a role for the products of the two genes in microtubule-based processes was obtained from studying flagellar assembly in apm1- and apm2- mutants.  相似文献   

3.
Chlamydomonas reinhardtii mutants resistant to the herbicide sulfometuron methyl (SM) were isolated and characterized. Growth of C. reinhardtii is sensitive to inhibition by SM at a concentration of 1 micromolar. Four mutants resistant to 10- to 100-fold higher concentrations were isolated. All possess a form of acetolactate synthase (ALS) whose specific activity in cell extracts is 100- to 1000-fold more resistant to SM than is the specific activity of wild-type enzyme. Only one mutant had abnormally low ALS specific activity in the absence of SM. All mutations were inherited as single lesions in the nuclear genome and were expressed in heterozygous diploids. The mutations in two strains mapped to linkage group IX about 30 centimorgans from streptomycin resistance and on the same side of the centromere, and in genetic crosses between mutants no segregation was observed. Accordingly, all mutations are tentatively assigned to gene smr-1. Herbicide resistance appears to be suitable as a selectable marker for molecular transformation in this organism.  相似文献   

4.
The antimicrotubule agents oryzalin (ORY), colchicine (COL) and taxol (TAX) were used to select three recessive, conditional lethal (ts-) mutants which defined two new essential loci, ory1 and cor1. The two ory1 mutants conferred resistance to ORY, TAX, and COL; the cor1 mutant conferred resistance only to COL. Each of the mutants displayed wild-type sensitivity to a number of unrelated inhibitors. Assembly and disassembly of flagellar microtubules in the ory1 mutants displayed wild-type sensitivity to ORY and COL, suggesting that the ory1 gene product either does not participate in these processes or the ory1 gene product alone is not sufficient to confer resistance. The ory1 locus mapped to linkage group X; cor1 was mapped to the left arm of linkage group XII. A synthetic lethal interaction was observed between ory1 and cor1 mutations, i.e., inferred ory1 cor1 double mutants were inviable at the permissive temperature. The conditional lethal phenotype of ory1-1 was used to select many spontaneous TS+ revertants, which arose at high frequencies. Genetic and phenotypic characterization of the revertants demonstrated that (1) the revertants fell into four phenotypic classes, including some which conferred supersensitivity to ORY and others which conferred cold-sensitive lethality, (2) reversion was caused in most or all cases by extragenic suppressors, (3) suppressor mutations displayed complex behavior in heterozygous (sup/+) diploids, (4) many different loci may be capable of suppressing ory1 mutants, and (5) suppressors of ory1-1 efficiently suppressed an independently isolated allele, ory1-2. Taken together the ory1, cor1, and suppressor mutations identify a number of interacting loci involved in essential cellular processes which are specifically susceptible to antimicrotubule agents.  相似文献   

5.
Peroxisome biogenesis requires various complex processes including organelle division, enlargement and protein transport. We have been studying a number of Arabidopsis apm mutants that display aberrant peroxisome morphology. Two of these mutants, apm2 and apm4, showed green fluorescent protein fluorescence in the cytosol as well as in peroxisomes, indicating a decrease of efficiency of peroxisome targeting signal 1 (PTS1)-dependent protein transport to peroxisomes. Interestingly, both mutants were defective in PTS2-dependent protein transport. Plant growth was more inhibited in apm4 than apm2 mutants, apparently because protein transport was more severely decreased in apm4 than in apm2 mutants. APM2 and APM4 were found to encode proteins homologous to the peroxins PEX13 and PEX12, respectively, which are thought to be involved in transporting matrix proteins into peroxisomes in yeasts and mammals. We show that APM2/PEX13 and APM4/PEX12 are localized on peroxisomal membranes, and that APM2/PEX13 interacts with PEX7, a cytosolic PTS2 receptor. Additionally, a PTS1 receptor, PEX5, was found to stall on peroxisomal membranes in both mutants, suggesting that PEX12 and PEX13 are components that are involved in protein transport on peroxisomal membranes in higher plants. Proteins homologous to PEX12 and PEX13 have previously been found in Arabidopsis but it is not known whether they are involved in protein transport to peroxisomes. Our findings reveal that APM2/PEX13 and APM4/PEX12 are responsible for matrix protein import to peroxisomes in planta.  相似文献   

6.
Mutants of Saccharomyces cerevisiae that are derepressed for meiosis and spore formation have been isolated and characterized genetically. All are the result of single, recessive nuclear mutations that fall into four linkage groups. Three of these groups are represented by spd1, spd3 and spd4 mutations, which in homozygous diploids confer poor growth and extensive sporulation on a range of non-fermentable media. Haploids carrying any of these mutations are arrested under these conditions in the G1 phase of the cell division cycle as large unbudded cells. The alleles of the spd2 mutation complemented all other mutations but were very closely linked to the spd1 locus. The fourth linkage group was represented by a mutation conferring temperature-sensitive growth and derepressed sporulation on homozygous diploids grown between 25 degrees C and 30 degrees C on media containing galactose or glycerol, but not glucose, as energy source. Above 30 degrees C this mutant lysed on all media. The mutation it carried failed to complement available cdc25 mutations. These data bring to five the number of loci at which mutation can lead to derepressed sporulation (spd1, spd3, spd4, cdc25 and cdc35). The spd1 locus has been mapped 13.9 cM to the left of the centromere on chromosome XV, adjacent to the SUP3 gene. Diploid strains homozygous for spd mutations are genetically unstable, giving rise to asporogenous mutants at high frequency, usually as the result of a second mutation unlinked to the spd mutation. Diploids homozygous for these mutations, and for spd mutations, show an altered regulation of the formulation of at least three polypeptides normally subject to carbon source repression.  相似文献   

7.
Aminopeptidase M1 (APM1), a single copy gene in Arabidopsis thaliana, encodes a metallopeptidase originally identified via its affinity for, and hydrolysis of, the auxin transport inhibitor 1-naphthylphthalamic acid (NPA). Mutations in this gene result in haploinsufficiency. Loss-of-function mutants show irregular, uncoordinated cell divisions throughout embryogenesis, affecting the shape and number of cotyledons and the hypophysis, and is seedling lethal at 5 d after germination due to root growth arrest. Quiescent center and cell cycle markers show no signals in apm1-1 knockdown mutants, and the ground tissue specifiers SHORTROOT and SCARECROW are misexpressed or mislocalized. apm1 mutants have multiple, fused cotyledons and hypocotyls with enlarged epidermal cells with cell adhesion defects. apm1 alleles show defects in gravitropism and auxin transport. Gravistimulation decreases APM1 expression in auxin-accumulating root epidermal cells, and auxin treatment increases expression in the stele. On sucrose gradients, APM1 occurs in unique light membrane fractions. APM1 localizes at the margins of Golgi cisternae, plasma membrane, select multivesicular bodies, tonoplast, dense intravacuolar bodies, and maturing metaxylem cells. APM1 associates with brefeldin A–sensitive endomembrane structures and the plasma membrane in cortical and epidermal cells. The auxin-related phenotypes and mislocalization of auxin efflux proteins in apm1 are consistent with biochemical interactions between APM1 and NPA.  相似文献   

8.
A UV-induced sulphite-requiring mutant (sD50) consistently shows mitotic linkage to groups I and VIII in haploids from heterozygous mapping diploids. This linkage was found to be due to a reciprocal translocation T2(I;VIII) which could not be separated from the sulphite requirement in about 100 tested progeny from heterozygous crosses, and both may well have been induced by the same mutational event. T2(I;VIII) is the first case of a reciprocal translocation in Aspergillus which showed meiotic linkages between markers of different linkage groups, and, in addition, involved chromosome arms containing markers suitable for complete mapping by the technique of mitotic recombination in homozygous translocation diploids.-Using various selective markers, haploid segregants and diploid crossovers of all possible types were isolated from homozygous translocation diploids. (1) Haploid segregants showed new linkage relationships in T/T diploids: all available markers of VIII now segregated as a group with the majority of the markers of I, except for the markers of the left tip of I. These formed a separate linkage group and are presumably translocated to VIII. (2) Diploid mitotic crossovers confirmed this information and showed that the orientation of the translocated segments was unchanged. These findings conclusively demonstrate that T2(I;VIII) is a reciprocal translocation due to an exchange of the left tip of group I with the long right arm of group VIII.-Since the position of the break on VIIIR was found to be at sD50 this marker could be used to map the break on IL by meiotic recombination in heterozygous crosses. In addition, such crosses showed reduced recombination around the breaks, so that it was possible to sequence markers which normally are barely linked.  相似文献   

9.
Allelism of pleiotropic drug resistance in Saccharomyces cerevisiae   总被引:6,自引:0,他引:6  
Allelism of pleiotropic drug resistant (pdr) mutants was evaluated by complementation tests, linkage to chromosome-VII centromere markers and response to a partial suppressor (sur). Complementation tests were confounded by incomplete dominance and somatic segregation. Phenotypic suppression by sur was observed for all mutant and wild type alleles and thus could not be used to distinguish alleles. Five different alleles were tentatively identified by their close linkage to leul; 88 tetrads from three factor crosses produced the following linkages--leul (4.7) pdrl (17.0) trp5. Resistance of DRI 9/T7, a [cir o] strain of French origin, was not inherited as an allele of pdr but was controlled by a different pleiotropic centromere linked gene. An evaluation of published data suggest that antl, AMYl, till, cyh3, BOR2, and axe1 may be alleles of pdr. Thus pdr appears to be an allele that influences permeability to many inhibitors.  相似文献   

10.
Eight independently isolated mutants which are supersensitive (Sst-) to the G1 arrest induced by the tridecapeptide pheromone alpha factor were identified by screening mutagenized Saccharomyces cerevisiae MATa cells on solid medium for increased growth inhibition by alpha factor. These mutants carried lesions in two complementation groups, sst1 and sst2. Mutations at the sst1 locus were mating type specific: MATa sst1 cells were supersensitive to alpha factor, but MAT alpha sst1 cells were not supersensitive to a factor. In contrast, mutations at the sst2 locus conferred supersensitivity to the pheromones of the opposite mating type on both MATa and MAT alpha cells. Even in the absence of added alpha pheromone, about 10% of the cells in exponentially growing cultures of MATa strains carrying any of three different alleles of sst2 (including the ochre mutation sst2-4) had the aberrant morphology ("shmoo" shape) that normally develops only after MATa cells are exposed to alpha factor. This "self-shmooing" phenotype was genetically linked to the sst2 mutations, although the leakiest allele isolated (sst2-3) did not display this characteristic. Normal MATa/MAT alpha diploids do not respond to pheromones; diploids homozygous for an sst2 mutation (MATa/MAT alpha sst2-1/sst2-1) were still insensitive to alpha factor. The sst1 gene was mapped to within 6.9 centimorgans of his6 on chromosome IX. The sst2 gene was unlinked to sst1, was not centromere linked, and was shown to be neither linked to nor centromere distal to MAT on the right arm of chromosome III.  相似文献   

11.
Methyl methanesulfonate (MMS)-sensitive mutants of Saccharomyces cerevisiae belonging to four different complementation groups, when homozygous, increase the rate of spontaneous mitotic segregation to canavanine resistance from heterozygous sensitive (canr/+) diploids by 13-to 170-fold. The mms8-1 mutant is MMS and X-ray sensitive and increases the rate of spontaneous mitotic segregation 170-fold. The mms9-1 and mms13-1 mutants are sensitive to X rays and UV, respectively, in addition of MMS, and increase the rate of spontaneous mitotic segregation by 13-fold and 85-fold, respectively. The mutant mms21-1 is sensitive to MMS, X rays and UV and increases the rate of spontaneous mitotic segregation 23-fold.  相似文献   

12.
Genetics of Aspergillus flavus: linkage of aflatoxin mutants   总被引:6,自引:0,他引:6  
Eight aflatoxin (afl) mutants of Aspergillus flavus were induced with N-methyl-N'-nitro-N-nitrosoguanidine. Heterozygous diploids formed between afl mutants and tester strains revealed that each afl mutant was recessive. Haploids selected from these heterozygous diploids indicated the linkage of all eight afl mutants to markers on group VII. These include previously mapped arg-7 (arginine), leu (leucine), dominant afl-1, and nor which accumulates norsolorinic acid that is visible as an orange-red pigment. Diploid complementation tests indicated that all but two afl mutants were nonallelic. Diploids homozygous for nor, resulting from crossing-over, were isolated and used to map new afl genes.  相似文献   

13.
Phenotypic reversion of ethanolamine-requiring Saccharomyces cerevisiae cho1 mutants is predominantly due to recessive mutations at genes unlinked to the chromosome V cho1 locus. The recessive suppressors do not correct the primary cho1 defect in phosphatidylserine synthesis but circumvent it with a novel endogenous supply of ethanolamine. One suppressor (eam1) was previously mapped to chromosome X, and 135 suppressor isolates were identified as eam1 alleles by complementation analysis. Additional meiotic recombination studies have identified a second genetic locus, eam2, that falls in the eam1 complementation group but maps close to the centromere of chromosome IV. Although the normal EAM1 and EAM2 alleles are fully dominant over recessive mutant alleles, their dominance fails in diploids heterozygous for defects in both genes simultaneously. The unusual complementation pattern could be explained by interaction of the gene products in formation of the same enzyme.  相似文献   

14.
Peroxisomes undergo dramatic changes in size, shape, number, and position within the cell, but the division process of peroxisomes has not been characterized. We screened a number of Arabidopsis mutants with aberrant peroxisome morphology (apm mutants). In one of these mutants, apm1, the peroxisomes are long and reduced in number, apparently as a result of inhibition of division. We showed that APM1 encodes dynamin-related protein 3A (DRP3A), and that mutations in APM1/DRP3A also caused aberrant morphology of mitochondria. The transient expression analysis showed that DRP3A is associated with the cytosolic side of peroxisomes. These findings indicate that the same dynamin molecule is involved in peroxisomal and mitochondrial division in higher plants. We also report that the growth of Arabidopsis, which requires the cooperation of various organelles, including peroxisomes and mitochondria, is repressed in apm1, indicating that the changes of morphology of peroxisomes and mitochondria reduce the efficiency of metabolism in these organelles.  相似文献   

15.
Summary Thirty six mutants resistant to the purine analogue 4-aminopyrazolo(3,4-d)pyrimidine were isolated from a prototrophic strain of yeast carrying su-pur, a suppressor of purine excretion. The mutants were allocated to seven genes app1 to app7. Linkage was found between app3, app5, app6 and app7 but not close enough to suggest functional grouping. Some of the alleles of app1, app3 and app4 are dominant. None of the mutants excreted purine when out-crossed to remove su-pur, nor did they show allelism or linkage to any of the pur (purine excretion) genes. Two mutants, app6-30 and app7-31, are recessive in diploids homo-/or heterozygous for su-pur but are dominant in diploids homozygous for su-pur +. The mutants exhibit gene specific, and in one case allele specific, patterns of cross-resistance to other analogues of adenine, hypoxathine and guanine. In the presence of su-pur all seven genes confer resistance to the adenine analogue 8-azaadenine; in addition mutants of app1, app3 (dominant alleles only) and app4 are resistant to 6-methylpurine, 6-mercaptopurine, 8-azaguanine and guanine. Combination with su-pur + confers resistance to all analogues tested except in the cases of app7, which remains sensitive to 8-azaguanine and app2 which is rendered sensitive to the five purine analogues. Exogenous adenine or hypoxanthine increases the growth rate of wild type (su-pur), app2, app6 and app7 but not app1, app3, app4 and app5. These effects of purine supplementation on strains of the genotype ade2 app sup-pur suggest that mutants of app1, app3, app4 and app5 are defective in the utilisation of exogenous purines. It is suggested that the other three genes may have defects in the control of de novo purine synthesis.Supported by a Medical Research Council Research Training Scholarship Awarded to W.R.P.  相似文献   

16.
 A Nicotiana plumbaginifolia plant (apm5r) resistant to amiprophos-methyl (APM), a phosphoro-amide herbicide, was isolated from protoplasts prepared from leaves of haploid plants. Genetic analysis revealed that the resistance is coded for by a dominant nuclear mutation and is associated with the increased stability of cortical microtubules. Two-dimensional polyacrylamide-gel electrophoresis, combined with immunoblotting using anti-tubulin monoclonal antibodies, showed that part of the β-tubulin in the resistant plant possessed lower isoelectric points than the β-tubulin of susceptible wild-type plants. These results provide evidence that the resistance to APM is associated with a mutation in a β-tubulin gene. The APM-resistant line showed cross-resistance to trifluralin, a dinitroaniline herbicide, suggesting a common mechanism of resistance between these two classes of herbicides. Received: 26 January 1997 / Accepted: 17 February 1998  相似文献   

17.
Rare diploids formed by sterile mutants have been studied by tetrad analysis. Sixteen classes of mutants representing at least five distinct genetic loci have been defined. One group of mutations, isolated only in alpha, maps at the mating-type locus, while none of the others shows any linkage to mating type. Some of the mutations are nonspecific for mating type, while others act only on a or alpha. In addition, mutations were found that prevent sporulation when heterozygous in diploids. These appear to be mutations of the mating-type alleles.  相似文献   

18.
Summary This paper describes the use of chlorate resistant mutants in genetic analysis of Aspergillus niger. The isolated mutants could be divided into three phenotypic classes on the basis of nitrogen utilization. These were designated nia, nir and cnx as for Aspergillus nidulans. All mutations were recessive to their wild-type allele in heterokaryons as well as in heterozygous diploids. The mutations belong to nine different complementation groups. In addition a complex overlapping complementation group was found. Evidence for the existence of eight linkage groups was obtained. Two linked chlorate resistance mutations and two tryptophan auxotrophic markers, which were unlinked to any of the known markers (Goosen et al. 1989), form linkage group VIII. We used the chlorate resistance mutations as genetic markers for the improvement of the mitotic linkage map of A. niger. We determined the linear order of three markers in linkage group VI as well as the position of the centromere by means of direct selection of homozygous cnxA1 recombinants. In heterozygous diploid cultures diploid chlorate resistant segregants appeared among conidiospores with a frequency of 3.9×10–2 (cnxG13 in linkage group I) to 2.1 × 10–2 (cnxD6 in linkage group 111). The mean frequency of haploid chlorate resistant segregants was 1.3 × 10–3. The niaD1 and niaD2 mutations were also complemented by transformation with the A. niger niaD + gene cloned by Unkles et al. (1989). Mitotic stability of ten Nia+ transformants was determined. Two distinct stability classes were found, showing revertant frequencies of 5.0 × 10–3 and 2.0 × 10–5 respectively.  相似文献   

19.
Summary A number of spontaneously-occurring, stable oligomycin-resistant mutants have been isolated in Aspergillus nidulans. Genetic characterisation showed that while most of the mutants examined were nuclear, one mutant was extranuclear as judged by several criteria. While the nuclear mutants showed no abnormalities on drug-free medium, the extranuclear mutant exhibited impaired growth ability. This character never segregated from the oligomycin-resistance character in any of the genetic experiments carried out, and appeared to be a secondary effect of the same mutation. The extranuclear genetic element coding for the oligomycin-resistance character was unable to co-exist in a stable fashion within the same mycelium as the wild type element, and they tended to segregate into sectors consisting almost wholly of one type or the other. The nuclear mutants showed incomplete dominance in heterozygous diploids, segregating fully resistant homozygous areas. All nuclear mutants mapped on linkage group VII.  相似文献   

20.
An UV-sensitive mutant has been isolated with a new technique which allows isolation of UV-sensitive and UV-non-mutable mutants in Aspergillus nidulans. This mutant is an allele of the known uvsB gene but shows some features not previously described in the alleles so far isolated. Its more important characteristics are: (1) Frequency of mitotic intergenic recombination is strongly increased in uvs/uvs diploids and it is highly variable in different clones: it varies from a minimum of 40-fold to a maximum of about 1000-fold in comparison with uvs+/uvs+ strains. (2) The frequency of mitotic intergenic recombination is increased also in the heterozygous diploids. (3) The frequency of spontaneous mutation is higher and highly variable in different subclones: it may be increased up to 1000-fold.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号