首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary 1H, 13C and 15N NMR assignments of the backbone atoms of subtilisin 309, secreted by Bacillus lentus, have been made using heteronuclear 3D NMR techniques. With 269 amino acids, this protein is one of the largest proteins to be sequentially assigned by NMR methods to date. Because of the size of the protein, some useful 3D correlation experiments were too insensitive to be used in the procedure. The HNCO, HN(CO)CA, HNCA and HCACO experiments are robust enough to provide most of the expected correlations for a protein of this size. It was necessary to use several experiments to unambiguously determine a majority of the -protons. Combined use of HCACO, HN(COCA)HA, HN(CA)HA, 15N TOCSY-HMQC and 15N NOESY-HMQC experiments provided the H chemical shifts. Correlations for glycine protons were absent from most of the spectra. A combination of automated and interactive steps was used in the process, similar to that outlined by Ikura et al. [(1990) J. Am. Chem. Soc., 112, 9020–9022] in the seminal paper on heteronuclear backbone assignment. A major impediment to the linking process was the amount of overlap in the C and H frequencies. Ambiguities resulting from this redundancy were solved primarily by assignment of amino acid type, using C chemical shifts and TOCSY ladders. Ninety-four percent of the backbone resonances are reported for this subtilisin. The secondary structure was analyzed using 3D 15N NOESY-HMQC data and C secondary chemical shifts. Comparison with the X-ray structure [Betzel et al. (1992) J. Mol. Biol., 223, 427–445] shows no major differences.Supplementary material available from F.J.M. van de Ven: the source code (PASCAL) for the computer program described in this paper.  相似文献   

2.
 Singly and doubly labeled δ-aminolevulinic acid derivatives were used to prepare rat liver outer mitochondrial membrane (OM) cytochrome b 5 containing a 13C-labeled heme active site. A variety of NMR experiments, including HMBC and INADEQUATE in conjunction with the more commonly used HMQC, NOESY, and COSY, were conducted to make unambiguous assignments of protonated carbons and the quaternary pyrrole-α and -β carbons in both isomeric forms of the paramagnetic active center of OM cytochrome b 5. Because the long interpulse delays in the HMBC experiment have a detrimental effect on the detectability of fast relaxing paramagnetically affected resonances, INADEQUATE is proposed as the experiment of choice for assigning quaternary carbons in paramagnetic hemes with carefully chosen macrocycle labeling patterns. Furthermore, the applicability of the INADEQUATE experiment to paramagnetic heme active sites should be facilitated greatly by the availability of biosynthetic methods for producing isotopically labeled b-hemes and, more recently, isotopically labeled c-hemes. Received: 21 September 1998 / Accepted: 25 November 1998  相似文献   

3.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

4.
The backbone and side chain resonance assignments of an engineered intein based on Mycobacterium tuberculosis RecA have been determined based on triple-resonance experiments with the uniformly [13C,15N]-labeled protein.  相似文献   

5.
6.
Summary Sequence-specific 1H, 13C and 15N resonance assignments have been established for rat intestinal fatty acid-binding protein complexed with palmitate (15.4 kDa) at pH 7.2 and 37°C. The resonance assignment strategy involved the concerted use of seven 3D triple-resonance expriments (CC-TOCSY, HCCH-TOCSY, HNCO, HNCA, 15N-TOCSY-HMQC, HCACO and HCA(CO)N). A central feature of this strategy was the concurrent assignment of both backbone and side-chain aliphatic atoms, which was critical for overcoming ambiguities in the assignment process. The CC-TOCSY experiment provided the unambiguous links between the side-chain spin systems observed in HCCH-TOCSY and the backbone correlations observed in the other experiments. Assignments were established for 124 of the 131 residues, although 6 of the 124 had missing amide 1H resonances, presumably due to rapid exchange with solvent under these experimental conditions. The assignment database was used to determine the solution secondary structure of the complex, based on chemical shift indices for the 1H, 13C, 13C and 13CO atoms. Overall, the secondary structure agreed well with that determined by X-ray crystallography [Sacchettini et al. (1989) J. Mol. Biol., 208, 327–339], although minor differences were observed at the edges of secondary structure elements.  相似文献   

7.
8.
Summary The assignments of the 1H, 15N, 13CO and 13C resonances of recombinant human basic fibroblast growth factor (FGF-2), a protein comprising 154 residues and with a molecular mass of 17.2 kDa, is presented based on a series of three-dimensional triple-resonance heteronuclear NMR experiments. These studies employ uniformly labeled 15N- and 15N-/13C-labeled FGF-2 with an isotope incorporation >95% for the protein expressed in E. coli. The sequence-specific backbone assignments were based primarily on the interresidue correlation of C, C and H to the backbone amide 1H and 15N of the next residue in the CBCA(CO)NH and HBHA(CO)NH experiments and the intraresidue correlation of C, C and H to the backbone amide 1H and 15N in the CBCANH and HNHA experiments. In addition, C and C chemical shift assignments were used to determine amino acid types. Sequential assignments were verified from carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the carbonyl correlations observed in the HNCO and HCACO experiments and C correlations from the HNCA experiment. Aliphatic side-chain spin systems were assigned primarily from H(CCO)NH and C(CO)NH experiments that correlate all the aliphatic 1H and 13C resonances of a given residue with the amide resonance of the next residue. Additional side-chain assignments were made from HCCH-COSY and HCCH-TOCSY experiments. The secondary structure of FGF-2 is based on NOE data involving the NH, H and H protons as well as 3JH n H coupling constants, amide exchange and 13C and 13C secondary chemical shifts. It is shown that FGF-2 consists of 11 well-defined antiparallel -sheets (residues 30–34, 39–44, 48–53, 62–67, 71–76, 81–85, 91–94, 103–108, 113–118, 123–125 and 148–152) and a helix-like structure (residues 131–136), which are connected primarily by tight turns. This structure differs from the refined X-ray crystal structures of FGF-2, where residues 131–136 were defined as -strand XI. The discovery of the helix-like region in the primary heparin-binding site (residues 128–138) instead of the -strand conformation described in the X-ray structures may have important implications in understanding the nature of heparin-FGF-2 interactions. In addition, two distinct conformations exist in solution for the N-terminal residues 9–28. This is consistent with the X-ray structures of FGF-2, where the first 17–19 residues were ill defined.  相似文献   

9.
The solution structure of oxidized bovine microsomal cytochrome b(5) mutant (E48, E56/A, D60/A) has been determined through 1524 meaningful nuclear Overhauser effect constraints together with 190 pseudocontact shift constraints. The final family of 35 conformers has rmsd values with respect to the mean structure of 0.045+/-0.009 nm and 0.088+/-0.011 nm for backbone and heavy atoms, respectively. A characteristic of this mutant is that of having no significant changes in the whole folding and secondary structure compared with the X-ray and solution structures of wild-type cytochrome b(5). The binding of different surface mutants of cytochrome b(5) with cytochrome c shows that electrostatic interactions play an important role in maintaining the stability and specificity of the protein complex formed. The differences in association constants demonstrate the electrostatic contributions of cytochrome b(5) surface negatively charged residues, which were suggested to be involved in complex formation in the Northrup and Salemme models, have cumulative effect on the stability of cyt c-cyt b(5) complex, and the contribution of Glu48 is a little higher than that of Glu44. Moreover, our result suggests that the docking geometry proposed by Northrup, which is involved in the participation of Glu48, Glu56, Asp60, and heme propionate of cytochrome b(5), do occur in the association between cytochrome b(5) and cytochrome c.  相似文献   

10.
The immunosuppressant FK506 binds Plasmodium falciparum FK-506 binding protein 35 (PfFKBP35) and shows anti-malarial activity. To understand molecular mechanism of the drug on the parasite, we have done NMR studies. Here, we report the assignment of FK506-binding domain of PfFKBP35.  相似文献   

11.
Sticholysin I is an actinoporin, a pore forming toxin, of 176 aminoacids produced by the sea anemone Stichodactyla heliantus. Isotopically labelled 13C/15N recombinant protein was produced in E. coli. Here we report the complete NMR 15N, 13C and 1H chemical shifts assignments of Stn I at pH 4.0 and 25°C (BMRB No. 15927).  相似文献   

12.
Summary Sequence-specific 1H and 15N resonance assignments have been made for 137 of the 146 nonprolyl residues in oxidized Desulfovibrio desulfuricans [Essex 6] flavodoxin. Assignments were obtained by a concerted analysis of the heteronuclear three-dimensional 1H-15N NOESY-HMQC and TOCSY-HMQC data sets, recorded on uniformly 15N-enriched protein at 300 K. Numerous side-chain resonances have been partially or fully assigned. Residues with overlapping 1HN chemical shifts were resolved by a three-dimensional 1H-15N HMQC-NOESY-HMQC spectrum. Medium-and long-range NOEs, 3JNH coupling constants, and 1HN exchange data indicate a secondary structure consisting of five parallel -strands and four -helices with a topology similar to that of Desulfovibrio vulgaris [Hidenborough] flavodoxin. Prolines at positions 106 and 134, which are not conserved in D. vulgaris flavodoxin, contort the two C-terminal -helices.Abbreviations CSI chemical shift index - DQF-COSY double-quantum-filtered correlation spectroscopy - DIPSI decoupling in the presence of scalar interactions - FMN flavin mononucleotide - GARP globally optimized alternating phase rectangular pulse - HMQC heteronuclear multiple-quantum coherence - HSQC heteronuclear single-quantum coherence - NOE nuclear Overhauser effect - NOESY nuclear Overhauser enhancement spectroscopy - TOCSY total correlation spectroscopy - TPPI time-proportional phase increments - TSP 3-(trimethylsilyl)propionic-2,2,3,3-d 4 acid, sodium salt  相似文献   

13.
14.
The ampG gene codes for a permease required to uptake anhydro-muropeptides into bacterial cytoplasm. Located upstream in the same operon, is another 579-base-pair-long open reading frame encoding a putative lipoprotein YajG, whose nearly complete 1H,13C,15N assignments are reported here.  相似文献   

15.
The putative translation initiation factor eIF5A is essential for cell viability and is highly conserved from archaebacteria to mammals. This factor is the only cellular protein that undergoes an essential posttranslational modification dependent on the polyamine spermidine, called hypusination. Although this protein may be involved in many important physiological functions, the precise molecular functions of eIF-5A remain to be clarified. To determine the solution structure and the protein interactions of eIF5A with its potential substrates, we performed NMR studies. Here, we report the nearly complete assignment of the eIF5A.  相似文献   

16.
Escherichia coli HybE is a chaperone of hydrogenase-2 and plays a critical role in coordinating the assembly and export of the HybO and HybC subunits of hydrogenase-2. Previous studies indicated that the quality-control during the assembly and export of the HybO-HybC by the Tat pathway was putatively performed by HybE. However, the molecular basis of the biological function of HybE remains unknown. The structural information is essential in order to obtain functional insights of HybE. Here we report the backbone and sidechain resonance assignments of 1H, 13C and 15 N atoms in E. coli HybE.  相似文献   

17.
18.
Summary By using fully 15N- and 15N/13C-labeled Escherichia coli dihydrofolate reductase, the sequence-specific 1H and 15N NMR assignments were achieved for 95% of the backbone resonances and for 90% of the 13C resonances in the binary folate complex. These assignments were made through a variety of three-dimensional proton-detected 15N and 13C experiments. A smaller but significant subset of side-chain 1H and 13C assignments were also determined. In this complex, only one 15N or 13C resonance was detected per 15N or 13C protein nucleus, which indicated a single conformation. Proton-detected 13C experiments were also performed with unlabeled DHFR, complexed with 13C-7/13C-9 folate to probe for multiple conformations of the substrate in its binary complex. As was found for the protein resonances, only a single bound resonance corresponding to a productive conformation could be detected for C-7. These results are consistent with an earlier report based on 1H NMR data [Falzone, C.J. et al. (1990) Biochemistry, 29, 9667–9677] and suggest that the E. coli enzyme is not involved in any catalytically unproductive binding modes in the binary complex. This feature of the E. coli enzyme seems to be unique among the bacterial forms of DHFR that have been studied to date.  相似文献   

19.
20.
Cytochrome P450 2B4 is a microsomal protein with a multi-step reaction cycle similar to that observed in the majority of other cytochromes P450. The cytochrome P450 2B4-substrate complex is reduced from the ferric to the ferrous form by cytochrome P450 reductase. After binding oxygen, the oxyferrous protein accepts a second electron which is provided by either cytochrome P450 reductase or cytochrome b5. In both instances, product formation occurs. When the second electron is donated by cytochrome b5, catalysis (product formation) is ∼10- to 100-fold faster than in the presence of cytochrome P450 reductase. This allows less time for side product formation (hydrogen peroxide and superoxide) and improves by ∼15% the coupling of NADPH consumption to product formation. Cytochrome b5 has also been shown to compete with cytochrome P450 reductase for a binding site on the proximal surface of cytochrome P450 2B4. These two different effects of cytochrome b5 on cytochrome P450 2B4 reactivity can explain how cytochrome b5 is able to stimulate, inhibit, or have no effect on cytochrome P450 2B4 activity. At low molar ratios (<1) of cytochrome b5 to cytochrome P450 reductase, the more rapid catalysis results in enhanced substrate metabolism. In contrast, at high molar ratios (>1) of cytochrome b5 to cytochrome P450 reductase, cytochrome b5 inhibits activity by binding to the proximal surface of cytochrome P450 and preventing the reductase from reducing ferric cytochrome P450 to the ferrous protein, thereby aborting the catalytic reaction cycle. When the stimulatory and inhibitory effects of cytochrome b5 are equal, it will appear to have no effect on the enzymatic activity. It is hypothesized that cytochrome b5 stimulates catalysis by causing a conformational change in the active site, which allows the active oxidizing oxyferryl species of cytochrome P450 to be formed more rapidly than in the presence of reductase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号