首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
利用基因工程技术,体外重组小分子类泛素修饰蛋白酶1(Ulp1)的活性片段,获得高表达、高特异性重组蛋白酶。从酿酒酵母Saccharomyces cerevisia中提取Ulp1编码第403到621个氨基酸残基之间的DNA片段(Ulp1p),在其C端加入6×His并连接到大肠杆菌表达载体pGEX中,构建重组表达质粒pGEX-Ulp1p-his6。将重组质粒转化至大肠杆菌Rosetta(DE3)中,氨苄青霉素抗性筛选转化子。表达、纯化后,以SUMO融合蛋白检测其活性。经过优化,该蛋白可溶性表达,表达量占菌体总蛋白的40.12%。可通过谷胱甘肽琼脂糖凝胶柱或Ni-NTA凝胶亲和层析纯化得到纯度98%的蛋白。经酶切分析,比活力为1.375×104U/mg。融合蛋白GST-Ulp1p-His6无需切除谷胱甘肽S-转移酶(GST)标签,具有很高的活性,制备简易;6×His标签,有利于底物蛋白切割后纯化,减少蛋白损失。本研究为制备高活力的SUMO蛋白酶提供了一个新方法。  相似文献   

2.
Evolution of a probable 'glutathione-binding ancestor' resulting in a common thioredoxin-fold for glutathione S-transferases and glutathione peroxidases may possibly suggest that a glutathione S-transferase could be engineered into a selenium-containing glutathione S-transferase (seleno-GST), having glutathione peroxidase (GPX) activity. Here, we addressed this question by production of such protein. In order to obtain a recombinant seleno-GST produced in Escherichia coli, we introduced a variant bacterial-type selenocysteine insertion sequence (SECIS) element which afforded substitution with selenocysteine for the catalytic Tyr residue in the active site of GST from Schistosoma japonica. Utilizing coexpression with the bacterial selA, selB, and selC genes (encoding selenocysteine synthase, SelB, and tRNA(Sec), respectively) the yield of recombinant seleno-GST was about 2.9 mg/L bacterial culture, concomitant with formation of approximately 85% truncation product as a result of termination of translation at the selenocysteine-encoding UGA codon. The mutations inferred as a result of the introduction of a SECIS element did not affect the glutathione-binding capacity (Km = 53 microM for glutathione as compared to 63 microM for the wild-type enzyme) nor the GST activity (kcat = 14.3 s(-1) vs. 16.6 s(-1)), provided that the catalytic Tyr residue was intact. When this residue was changed to selenocysteine, however, the resulting seleno-GST lost the GST activity. It also failed to display any novel GPX activity towards three standard peroxide substrates (hydrogen peroxide, butyl hydroperoxide or cumene hydroperoxide). These results show that recombinant selenoproteins with internal selenocysteine residues may be heterologously produced in E. coli at sufficient amounts for purification. We also conclude that introduction of a selenocysteine residue into the catalytic site of a glutathione S-transferase is not sufficient to induce GPX activity in spite of a maintained glutathione-binding capacity.  相似文献   

3.
It has recently been reported that one of the most important factors of yeast resistance to the fungicide chlorothalonil is the glutathione contents and the catalytic efficiency of glutathione S-transferase (GST) (Shin et al, 2003). GST is known to catalyze the conjugation of glutathione to a wide variety of xenobiotics, resulting in detoxification. In an attempt to elucidate the relation between chlorothalonil-detoxification and GST, the GST of Escherichia coli was expressed and purified. The drug-hypersensitive E. coli KAM3 cells harboring a plasmid for the overexpression of the GST gene can grow in the presence of chlorothalonil. The purified GST showed chlorothalonil-biotransformation activity in the presence of glutathione. Thus, chlorothalonil is detoxified by the mechanism of glutathione conjugation catalyzed by GST.  相似文献   

4.
Glutathione S-transferases (GSTs; EC 2.5.1.18) are encoded by a gene family. Some GSTs have the capacity to bind to indole-3-acetic acid (IAA), whereas the gene expression of other GSTs is regulated by auxin. In order to assess a possible physiological significance of the auxin binding of GST, we investigated effects of auxins on the activity of GST expressed in Escherichia coli. cDNA cloning was carried out for the fifth gene ( GST5 ) of GST in Arabidopsis. Although the deduced amino acid sequence of GST5 was remotely related to that of the other Arabidopsis GSTs (less than 20% identical), the GST5 protein (GST5) expressed in E. coli showed GST activity. Apparent Km values of GST5 are 0.86 and 1.29 m M for glutathione (GSH) and 1-chloro-2,4-dinitrobenzene, respectively. IAA, 2,4-dichlorophenoxyacetic acid (2,4-D), 1-naphthaleneacetic acid (1-NAA) and 2-NAA inhibited the enzyme activity competitively with respect to GSH. The apparent Ki of IAA is 1.56 m M . Salicylic acid inhibited GST activity in a noncompetitive manner. 2,4-D was the most inhibitory among the tested chemicals. GST5 bound to GSH-immobilized agarose gel was effectively eluted by IAA. These results indicate that IAA and the related substances bind to GST5 at the GSH-binding site, and exclude the possibility that the compounds could be substrates for GST5. Although the Ki value of IAA is too high for any physiological consequences, it might be assumed that GST activity is modulated in vivo by an auxin-related substance(s). The steady-state level of the GST5 mRNA was increased by wounding, heat shock, and spraying buffer on the plant, but was not influenced by auxin treatment.  相似文献   

5.
Alpha-L-fucosidase (FUC) is a glycosidase involved in the degradation of fucose-containing glycoconjugates. A cDNA representing the complete sequence of human FUC was inserted into the prokaryotic expression vector pGEX-2T. High levels of the glutathione S-transferase (GST) fusion protein were detected in Escherichia coli cells after induction with isopropyl thio-beta-D-galactopyranoside. The GST-FUC protein was mostly found as inclusion bodies and attempts to optimise its expression as a soluble form were unsuccessful. Nevertheless, the recombinant protein was purified by affinity chromatography on glutathione-sepharose and its fucosidase activity was characterised. After thrombin cleavage of the GST tag, the FUC precursor protein was purified by electro-elution.  相似文献   

6.
M Iizuka  Y Inoue  K Murata    A Kimura 《Journal of bacteriology》1989,171(11):6039-6042
Glutathione S-transferase was purified approximately 2,300-fold from cell extracts of Escherichia coli B with a 7.5% activity yield. The molecular weight of the enzyme was 45,000, and the enzyme appeared to consist of two homogeneous subunits. The enzyme was almost specific to 1-chloro-2,4-dinitrobenzene (Km, 1.43 mM) and glutathione (Km, 0.33 mM). The optimal pH and optimal temperature for activity were 7.0 and 50 degrees C, respectively, and the enzyme was stable from pH 5 to 11. The activity of the enzyme for 1-chloro-2,4-dinitrobenzene (3,2 mumol/min per mg of protein) was significantly lower than those of the enzymes from mammals, plants, and fungi.  相似文献   

7.
The bacterial expression and purification of human pi class glutathione S-transferase (hGST P1-1) as a hexahistidine-tagged polypeptide was performed. The expression plasmid for hGST P1-1 was constructed by ligation of the cDNA which codes for the protein into the expression vector pET-15b. The expressed protein was purified by either glutathione or metal (Co(2+)) affinity column chromatography, which produced the pure and fully active enzyme in one step with a yield of more than 30 mg/liter culture. The activity of the purified protein was 130 units mg(-1) from the GSH affinity column and 112 units mg(-1) from the Co(2+) affinity column chromatography. The purity of the protein was assessed by electrospray ionization mass spectrometry and size-exclusion chromatography. It showed that the real molecular weight of the hexahistidine-tagged hGST P1-1 polypeptide chain agreed with the calculated value and that the purified protein eluted as an apparent homodimer on the gel filtration column. Our expression system allows the expression and purification of active hexahistidine-tagged hGST P1-1 in high yield with no need of removal of the hexahistidine tag and gives pure protein in one purification step allowing further study of this enzyme.  相似文献   

8.
R S Haun  J Moss 《Gene》1992,112(1):37-43
A plasmid vector has been constructed that allows the ligation-independent cloning of cDNAs in any reading frame and directs their synthesis in Escherichia coli as glutathione S-transferase-linked fusion proteins. The cloning procedure does not require restriction enzyme digestion of the target sequence and does not introduce any additional sequences between the thrombin cleavage site and the foreign protein. Extended single-stranded tails complementary between the vector and insert, generated by the (3'----5') exonuclease activity of T4 DNA polymerase, obviate the need for in vitro ligation prior to bacterial transformation. This cloning procedure is rapid and highly efficient, and has been used successfully to construct a series of fusion proteins to investigate the sequence requirements for efficient thrombin cleavage.  相似文献   

9.
We purified and characterized a soluble human interferon gamma receptor expressed in Escherichia coli. The soluble receptor comprises the amino acids 15-246 of the encoded protein (Aguet, M., Dembic, Z., and Merlin, G. (1988) Cell 55, 273-280) and was purified from large scale fermentations through four chromatographic steps with an overall recovery of 28%. The refolded soluble receptor shows some heterogeneity on nonreducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis, where it appears as the major band of 27 kDa molecular mass, accompanied by a few minor bands with molecular masses between 26 and 30 kDa. On reducing sodium dodecyl sulfate-polyacrylamide gel electrophoresis it appears as a homogeneous protein of 32 kDa molecular mass. The soluble interferon gamma receptor is an active and stable protein and is recognized by specific antibodies raised against the native receptor. When nonreduced it has the capacity to specifically bind interferon gamma and to compete for the binding of interferon gamma to the cell surface receptor. The observed heterogeneity of the soluble interferon gamma receptor under nonreducing electrophoretic conditions is probably due to different conformational forms resulting from the formation of non-native intramolecular disulfide bonds among the 8 cysteine residues present in the soluble interferon gamma receptor molecule.  相似文献   

10.
Lectins are a class of proteins with specific carbohydrate-binding properties found in a wide variety of plants and animals. Gramineae lectins are presumably defense-related proteins in plants that exert their effect by binding to N-acetylglucosamine. Barley lectin is a vacuolar protein synthesized with an amino-terminal signal sequence for entering the secretory pathway and a carboxyl-terminal propeptide necessary for proper targeting to the vacuole. To analyze the three-dimensional structure of barley lectin with the carboxyl-terminal extension and to investigate whether the conversion of the prolectin into the mature molecule leads to a conformational change, the precursor and the mature forms of barley lectin were expressed in Escherichia coli. Both proteins accumulated in denatured form in inclusion bodies were solubilized in 8 M urea and renatured in a redox buffer system. Active pro- and mature barley lectins were purified to homogeneity by affinity chromatography.  相似文献   

11.
Several systems have been developed to allow for rapid and efficient purification of recombinant proteins expressed in bacteria. The expression of polypeptides in frame with glutathione S-transferase (GST) allows for purification of the fusion proteins from crude bacterial extracts under nondenaturing conditions by affinity chromatography on glutathione agarose (D. B. Smith and K. S. Johnson, 1988, Gene 67, 31-40). This vector expression system has also incorporated specific protease cleavage sites to facilitate proteolysis of the bacterial fusion proteins. In our hands, the cleavage of these fusion proteins at a thrombin cleavage site proceeded slowly. To facilitate the cleavage of fusion proteins, we have introduced a glycine-rich linker (glycine kinker) containing the sequence P.G.I.S.G.G.G.G.G located immediately following the thrombin cleavage site. This glycine kinker greatly increases the thrombin cleavage efficiency of several fusion proteins. The introduction of the glycine kinker into fusion proteins allows for the cleavage of the fusion proteins while they are attached to the affinity resin resulting in a single step purification of the recombinant protein. More than 2 mg of the highly purified protein was obtained from the equivalent of 100 ml of bacterial culture within a few hours when a protein tyrosine phosphatase was employed as a test protein. The vector, pGEX-KG, has also been modified to facilitate cloning of a variety of cDNAs in all reading frames and has been successfully used to express several eukaryotic proteins.  相似文献   

12.
Three elongation factors, EF-1 alpha, EF-1 beta gamma and EF-2, have been isolated from wheat germ. EF-1 alpha and EF-2 are single polypeptides with molecular weights of approximately 52,000 and 102,000, respectively. The most highly purified preparations of EF-1 beta gamma contain four polypeptides with molecular weights of approximately 48,000, 46,000 and 36,000, 34,000. EF-1 alpha supports poly(U)-directed binding of Phe-tRNA to wheat germ ribosomes and catalyzes the hydrolysis of GTP in the presence of ribosomes, poly(U), and Phe-tRNA. EF-2 catalyzes the hydrolysis of GTP in the presence of ribosomes alone and is ADP-ribosylated by diphtheria toxin to the extent of 0.95 mol of ADP-ribose/mol of EF-2. EF-1 beta gamma decreases the amount of EF-1 alpha required for polyphenylalanine synthesis about 20-fold. EF-1 beta gamma enhances the ability to EF-1 alpha to support the binding of Phe-tRNA to the ribosomes and enhances the GTPase activity of EF-1 alpha. Wheat germ EF-1 alpha, EF-1 beta gamma, and EF-2 support polyphenylalanine synthesis on rabbit reticulocyte ribosomes as well as on yeast ribosomes.  相似文献   

13.
In this report we describe the purification and characterization of recombinant porcine prorelaxin expressed in Escherichia coli. Nucleotide sequence encoding porcine prorelaxin was inserted into an E. coli expression vector, pOTS, and the recombinant plasmid was transformed into the E. coli host (AR120). Upon induction with nalidixic acid, the 19-kDa recombinant porcine prorelaxin was produced at a level of approximately 8% of the total accumulated cell protein. The recombinant prorelaxin was purified to homogeneity by CM-cellulose chromatography and reversed-phase HPLC, after refolding in the presence of reduced and oxidized glutathione and a low concentration of guanidine-HCl. The identity of the recombinant prorelaxin was confirmed by the correct size, immunoreactivity with antibodies against native porcine relaxin, and direct amino-terminal sequence analysis. Furthermore, the purified recombinant prorelaxin could be converted to the 6-kDa relaxin by limited digestion with trypsin. Trypsin was shown to cleave at the carboxyl side of Arg29 and Arg137 residues of the recombinant prorelaxin, producing the des-ArgA1-B29-relaxin, and degrade the 13-kDa connecting peptide into small peptides. Both the recombinant prorelaxin and converted relaxin were found to be biologically active in an in vitro bioassay for relaxin.  相似文献   

14.
The full-length normal and T24 mutant human H-ras proteins and two truncated derivatives of the T24 mutant were expressed efficiently in Escherichia coli. The proteins accumulated to 1 to 5% of total cellular protein, and each was specifically recognized by anti-ras monoclonal antibodies. The two full-length proteins as well as a carboxyl-terminal truncated derivative (deleted for 23 amino acid residues) were soluble upon cell lysis and were purified to 90% homogeneity without the use of denaturants. In contrast, an amino-terminal truncated ras derivative (deleted for 22 amino acid residues) required treatment with urea for its solubilization. The guanine nucleotide binding activity of these four proteins was assessed by a combination of ligand binding on proteins blots, immunoprecipitation, and standard filter binding procedures. The full-length proteins showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The showed similar binding kinetics and a stoichiometry approaching 1 mol of GTP bound per mol of protein. The carboxyl-terminal truncated protein also bound GTP, but to a reduced extent, whereas the amino-terminal truncated protein did not have binding activity. Apparently, the carboxyl-terminal domain of ras, although important for transforming function, does not play a critical role in GTP binding.  相似文献   

15.
The high-level expression of human interleukin-1 beta in Escherichia coli is described. The protein contributes about 12% of the total cell protein and is associated with the soluble cytoplasmic fraction of the cell. A method for the purification of the protein is given which is based on anion- and cation-exchange chromatographies. The isolated protein, shown to be homogeneous by several analytical methods, has been characterized by amino acid analysis, N- and C-terminal sequence analysis and analytical centrifugation. The protein is biologically active as demonstrated by two different in vitro assays, namely, the mononuclear cell factor (IL-1/MCF) assay and lymphocyte activating factor (IL-1/LAF) assay. The specific activities determined with the IL-1/MCF and IL-1/LAF assays, are 2 X 10(7) and 4 X 10(7) units mg-1, respectively.  相似文献   

16.
We have isolated a glutathione S-transferase Yb1 subunit cDNA from a lambda gt11 cDNA collection constructed from rat testis poly(A) RNA enriched for glutathione S-transferase mRNA activities. This Yb1 cDNA, designated pGTR201, is identical to our liver Yb1 cDNA clone pGTR200 except for a shorter 5'-untranslated sequence. Active glutathione S-transferase is expressed from this Yb1 cDNA driven by the tac promoter on the plasmid construct pGTR201-KK. The expressed glutathione S-transferase protein begins with the third codon (Met) of the cDNA, and is missing the N-terminal proline of rat liver glutathione S-transferase 3-3. Therefore, our Escherichia coli expressed glutathione S-transferase protein represents a variant form of glutathione S-transferase 3-3 (Yb1Yb1), designated GST 3-3(-1). The expressed Yb1 subunits are assembled into a dimer as purified from sonicated E. coli crude extracts. In the absence of dithiothreitol three active isomers can be resolved by ion-exchange chromatography. The pure protein has an extinction coefficient of 9.21 x 10(4) M-1 cm-1 at 280 nm or E0.1% 280 = 1.78 and a pI at 8.65. It has a substrate specificity pattern similar to that of the authentic glutathione S-transferase 3-3. The GST 3-3(-1) has a KM of 202 microM for reduced GSH and of 36 microM for 1-chloro-2,4-dinitrobenzene. The turnover number for this conjugation reaction is 57 s-1. Results of kinetic studies of this reaction with GST 3-3(-1) are consistent with a sequential substrate binding mechanism. We conclude that the first amino acid proline of glutathione S-transferase 3-3 is not essential for enzyme activities.  相似文献   

17.
The alkaline exonuclease (AE) encoded by the herpes simplex virus type 1 (HSV-1) UL12 open reading frame was inducibly expressed in Escherichia coli and purified without the use of chromatographic separation. This recombinant AE was found to exhibit the same biochemical properties as the virus-encoded protein and was used to confirm the existence of a weak endonucleolytic activity in the enzyme. Antisera raised against the recombinant protein recognized several forms of the AE in HSV-1-infected cells. This expression and purification strategy will provide an economical and easily accessible alternative source of HSV-1 AE for future in vitro studies.  相似文献   

18.
19.
As a potential anti-tumor protein, tumor necrosis factor-related apoptosis-inducing ligand(TRAIL) has drawn considerable attention. This report presented the purification and characterization ofsoluble TRAIL, expressed as inclusion bodies in E. coli. sTRAIL inclusion bodies were solubilized andrefolded at a high concentration up to 0.9 g/L by a simple dilution method. Refolded protein was purifiedto electrophoretic homogeneity by a single-step immobilized metal affinity chromatography. The purifiedsTRAIL had a strong cytotoxic activity against human pancreatic tumor cell line 1990, with EDs0 about 1.5mg/L. Circular dichroism and fluorescence spectrum analysis showed that the refolded sTRAIL had astructure similar to that of native protein with 13-sheet secondary structure. This efficient procedure ofsTRAIL renaturation may be useful for the mass production of this therapeutically important protein.  相似文献   

20.
Rice carbonic anhydrase (CA) was successfully expressed as a glutathione-S-transferase (GST) fusion protein in an Escherichia coli expression system. The optimal induction concentration of IPTG and growth temperature was found to be 1.0mM and 28 degrees C. To obtain milligram amounts of homogeneous active recombinant proteins, 150mM NaCl and Mg-ATP solution were used during the purification procedures. After improving the conditions of expression and the purification procedures, final yield of recombinant proteins was 1.3mg/g wet cell weight after enzymatic cleavage of the GST tag, and the molecular weight was about 29kDa. The purified protein had CO(2) hydration activity, and had no detectable esterase activity in vitro. Addition of zinc improved the CO(2) hydration activity of the rice CA produced by E. coli. The effects of acetazolamide (AZ) and the anions N3-, NO3-, I(-), Br(-), and Cl(-) on CO(2) hydration activity of CA were studied. AZ and N3- were found to be strong inhibitors of rice CA. The inhibitory activity of AZ and ions was in the order AZ>N3->NO3->I(-)>Br(-)>Cl(-).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号