首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of desipramine on dopamine receptor binding in vivo   总被引:2,自引:0,他引:2  
T Suhara  O Inoue  K Kobayasi 《Life sciences》1990,47(23):2119-2126
Effect of desipramine (given i.p. 30 min prior to the tracer injection) on the in vivo binding of 3H-SCH23390 and 3H-N-methylspiperone (3H-NMSP) in mouse striatum was studied. The ratio of radioactivity in the striatum to that in the cerebellum at 15 min after i.v. injection of 3H-SCH23390 or 45 min after injection of 3H-NMSP were used as indices of dopamine D1 or D2 receptor binding in vivo, respectively. In vivo binding of D1 and D2 receptors was decreased in a dose-dependent manner by acute treatment with desipramine (DMI). A saturation experiment suggested that the DMI-induced reduction in the binding was mainly due to the decrease in the affinity of both receptors. No direct interactions between the dopamine receptors and DMI were observed in vitro by the addition of 1 mM of DMI into striatal homogenate. Other antidepressants such as imipramine, clomipramine, maprotiline and mianserin also decreased the binding of dopamine D1 and D2 receptors. The results indicated an important role of dopamine receptors in the pharmacological effect of antidepressants.  相似文献   

2.
Dopamine-sensitive adenylate cyclase and 3H-SCH 23390 binding parameters were measured in the rat substantia nigra and striatum 15 days after the injection of 6-hydroxydopamine into the medial forebrain bundle. The activity of nigral dopamine-sensitive adenylate cyclase and the binding of 3H-SCH 23390 to rat nigral D-1 dopamine receptors were markedly decreased after the lesion. On the contrary, 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine pathway enhanced both adenylate cyclase activity and the density of 3H-SCH 23390 binding sites in striatal membrane preparations. The changes in 3H-SCH 23390 binding found in both nigral and striatal membrane preparations were associated with changes in the total number of binding sites with no modifications in their apparent affinity. The results indicate that: within the substantia nigra a fraction (30%) of D-1 dopamine receptors coupled to the adenylate cyclase is located on cell bodies and/or dendrites of dopaminergic neurons; striatal D-1 dopamine receptors are tonically innervated by nigrostriatal afferent fibers.  相似文献   

3.
Methods for measuring 3H-SCH 23390 binding and dopamine (DA) stimulated adenylate cyclase (AC) were established in identical tissue preparations and under similar experimental conditions. Pharmacological characterization revealed that both assays involved interaction with the D1 receptor or closely associated sites. In order to investigate whether the binding sites for 3H-SCH 23390 and DA in fact are identical, the antagonistic effects of a variety of pharmacologically active compounds were examined. Surprisingly, the Ki-values obtained from Schild-plot analysis of the antagonism of DA-stimulated AC, were 80-240 times higher than the Ki-values obtained from competition curves of 3H-SCH 23390 binding. Since both assays were performed under identical conditions, the differences in Ki-values indicate the possibility of different binding sites for DA and 3H-SCH 23390 or, that DA and 3H-SCH 23390 label different states of the same receptor.  相似文献   

4.
Chronic treatment with SCH 23390, a selective D-1 dopamine receptor antagonist, elicited a 32% increase in the density of 3H-SCH 23390 binding sites in nigral membrane preparations but failed to change the apparent KD of the ligand for its binding sites. Haloperidol, a D-2 dopamine receptor antagonist which blocks the dopamine-sensitive adenylate cyclase and (-) sulpiride, a selective D-2 dopamine receptor blocker, which does not block the dopamine-sensitive adenylate cyclase, failed to change both the Bmax and KD of 3H-SCH 23390 binding. Finally, the intrastriatal injection of kainic acid produced a marked decrease of both GAD activity and GABA content and 3H-SCH 23390 binding sites (65%) in the homolateral substantia nigra. The results show that in the rat substantia nigra most of the 3H-SCH 23390 binding sites have a presynaptic localization on the striato-nigral GABAergic afferent terminals and suggest that dopamine released from nigral dendrites exerts a tonic influence on these presynaptic D-1 dopamine receptors.  相似文献   

5.
A novel benzazepine, SCH 23390, has recently been described as a very potent and selective dopamine D-1 receptor antagonist based on its potent inhibition of dopamine sensitive adenylate cyclase and its selective displacement of 3H-piflutixol from rat striatal receptor sites. In the present study, the in vitro binding of 3H-SCH 23390 to specific striatal receptor sites has been characterized. Binding was saturable and stereospecific, and the results of both saturation and competition studies are consistent with the binding of 3H-SCH 23390 to a single striatal site. A KD of 0.53 nM was obtained through Scatchard analysis. Relative potencies of a variety of neuroleptics in competing with 3H-SCH 23390 nd also 3H-spiperone support an interpretation that the single site to which 3H-SCH 23390 binds is the D-1 dopamine receptor. Also, the binding capacity of 3H-SCH 23390 (69 pmoles/gm wet weight) is in agreement with published values for the binding capacities of 3H-piflutixol and 3H-flupentixol. These data, coupled with the low level of non-specific binding encountered with this radioligand (4–8% of total binding at normally employed ligand concentration of 0.3 nM), its high specific activity and its negligible binding to plastic and glass surfaces make it ideally suited for studying interactions with this receptor.  相似文献   

6.
D1 and D2 dopamine receptors were characterized in the caudate-putamen region of nonhuman primate brains (Macaca fascicularis). D1 dopamine receptors were identified with [3H]SCH 23390 and D2 receptors with [3H]-spiperone. Scatchard analysis of [3H]SCH 23390 saturation data using washed membranes revealed a single high-affinity binding site (KD, 0.352 +/- 0.027 nM) with a density (Bmax) of 35.7 +/- 2.68 pmol/g original wet tissue weight (n = 10). The affinity of [3H]spiperone for the D2 site was 0.039 +/- 0.007 nM and the density was 25.7 +/- 1.97 pmol/g original wet tissue weight (n = 10). D1 and D2 receptors in nonhuman primates may be differentiated on the basis of drug affinities and stereoselectivity. In competition experiments, RS-SKF 38393 was the most selective D1 agonist, whereas (+)-4-propyl-9-hydroxynaphthoxazine [(+)-PHNO] was the most selective D2 agonist. Apomorphine was essentially nonselective for D1 or D2 binding sites. Of the antagonists, R-SKF 83566 and SCH 23390 were the most selective for the D1 site, whereas YM-09151-2 was the most selective for the D2 site. cis-Flupentixol and (S)-butaclamol were the least selective dopamine antagonists. D1 receptors bound benzazepine antagonists (SCH 23390/SCH 23388, R-SKF 83692/RS-SKF 83692) stereoselectively whereas D2 receptors did not. Conversely D2 receptors bound (S)-sulpiride and (+)-PHNO more potently than their enantiomers whereas D1 receptors showed little stereoselectively for each of these isomeric pairs. These binding characteristics may be utilized for evaluation of individual receptor function in vivo.  相似文献   

7.
SCH 39166 [(-)-trans-6,7,7a,8,9, 13b-hexahydro-3-chloro-2-hydroxy-N-methyl-5H-benzo-[d]naphtho[2, 1b]azepine] has recently been described as a selective D1 antagonist and has entered clinical trials for the treatment of schizophrenia. The tritiated analogue of this compound, [3H]SCH 39166, has now been synthesized and characterized for its in vitro and in vivo binding profiles. [3H]SCH 39166 binds to D1 receptors in a saturable, high-affinity fashion, with a KD of 0.79 nM. In competition studies, D1-selective antagonists like SCH 23390 displaced the binding of [3H]SCH 39166 with nanomolar affinities, whereas antagonists of other receptors exhibited poor affinity. In vivo, [3H]SCH 39166 bound to receptors in rat striatum in a fashion suggestive of D1 selectivity. Further, when the time course for the binding of [3H]SCH 39166 was compared with the behavioral time course of the unlabeled compound, the two durations of action were virtually indistinguishable. Similar studies were performed for SCH 23390 and its tritiated analogue, but the in vivo binding of this radioligand exhibited a duration of action far greater than the behavioral activity of the unlabeled drug. In concert, these data demonstrate that [3H]SCH 39166 selectively labels D1 receptors in vitro and in vivo, and that this drug is superior for in vivo imaging of the D1 receptor.  相似文献   

8.
Dopamine D1 receptors were solubilized from canine and bovine striatal membranes with the detergent digitonin. The receptors retained the pharmacological characteristics of membrane-bound D1 receptors, as assessed by the binding of the selective antagonist [3H]SCH 23390. The binding of [3H]SCH 23390 to solubilized receptor preparations was specific, saturable, and reversible, with a dissociation constant of 5 nM. Dopaminergic antagonists and agonists inhibited [3H]SCH 23390 binding in a stereoselective and concentration-dependent manner with an appropriate rank order of potency for D1 receptors. Moreover, agonist high affinity binding to D1 receptors and its sensitivity to guanine nucleotides was preserved following solubilization, with agonist dissociation constants virtually identical to those observed with membrane-bound receptors. To ascertain the molecular basis for the existence of an agonist-high affinity receptor complex, D1 receptors labeled with [3H] dopamine (agonist) or [3H]SCH 23390 (antagonist) prior to, or following, solubilization were subjected to high pressure liquid steric-exclusion chromatography. All agonist- and antagonist-labeled receptor species elute as the same apparent molecular size. Treatment of brain membranes with the guanine nucleotide guanyl-5'-yl imidodiphosphate prior to solubilization prevented the retention of [3H]dopamine but not [3H]SCH 23390-labeled soluble receptors. This suggests that the same guanine nucleotide-dopamine D1 receptor complex formed in membranes is stable to solubilization and confers agonist high affinity binding in soluble preparations. These results contrast with those reported on the digitonin-solubilized dopamine D2 receptor, and the molecular mechanism responsible for this difference remains to be elucidated.  相似文献   

9.
The effect of tyrosine-alkylating agents on the ligand-binding properties of bovine striatal dopamine D1 and D2 receptors was investigated. The tyrosine-alkylating agents, p-nitrobenzenesulphonylfluoride (pNBSF) and tetranitromethane (TNM) caused a time-and dose-dependent loss of the binding of [3H]SCH-23390 and [3H]spiroperidol, ligands specific for dopamine D1 and D2 receptors, respectively. The two dopamine receptors, however, showed a differential sensitivity to inactivation by these agents. The mechanism of inhibition of the two receptors appears to be complex as treatment of membranes with pNBSF and TNM resulted in a decrease of both the Kd and the Bmax of ligand binding. Spiroperidol almost completely protected the TNM-induced inhibition of [3H]spiroperidol binding to dopamine D2 receptors whereas SCH-23390 afforded only partial protection of the [3H]SCH-23390 binding by TNM suggesting that more than one tyrosine groups may be involved in the D1 receptor binding activity.  相似文献   

10.
SCH 23390, an apparently selective antagonist of central D1 dopamine receptors, produced profound catalepsy at low doses (0.1 mg/kg, s.c.). Pretreatment with the selective D2 receptor agonists LY 141865, RU 24213 or LY 171555, the active (-) enantiomer of LY 141865, elicited a dose-dependent inhibition of the cataleptic response. Pergolide and apomorphine were also effective. This effect was not due to altered disposition or penetration of SCH 23390 into the brain since pretreatment with a dose of LY 171555 which completely blocked catalepsy had no effect on the ID50 of SCH 23390 to inhibit 3H-cis-piflutixol binding to D1 receptors measured ex vivo. Alternative mechanisms are considered to explain the results, which offer new insights into striatal dopaminergic regulation of motor activity.  相似文献   

11.
The binding of [3H]forskolin to a homogeneous population of binding sites in rat striatum was enhanced by NaF, guanine nucleotides and MgCl2. These effects of NaF and guanylylimidodiphosphate (Gpp(NH)p) were synergistic with MgCl2, but NaF and Gpp(NH)p together elicited no greater enhancement of [3H]forskolin binding. These data suggest that [3H]forskolin may label a site which is modulated by the guanine nucleotide regulatory subunit which mediates the stimulation of adenylate cyclase (NS). The D1 dopamine receptor is known to stimulate adenylate cyclase via NS. In rat striatum, the Bmax of [3H]forskolin binding sites in the presence of MgCl2 and NaF was approximately two fold greater than the Bmax of [3H]SCH23390-labeled D1 dopamine receptors. Incubation of striatal homogenates with the protein modifying reagent EEDQ elicited a concentration-dependent decrease in the binding of both [3H]SCH23390 and [3H]forskolin, although EEDQ was approximately 14 fold more potent at inactivating the D1 dopamine receptor. Following in vivo administration of EEDQ there was no significant effect on [3H]forskolin binding sites using a dose of EEDQ that irreversibly inactivated greater than 90% of D1 dopamine receptors. These data suggest that EEDQ is a suitable tool for investigating changes in the stoichiometry of receptors and their second messenger systems.  相似文献   

12.
Serotonergic component of SCH 23390: in vitro and in vivo binding analyses   总被引:3,自引:0,他引:3  
A series of benzazepines related to SCH 23390 were tested for binding to the 5HT-2 receptor. The compounds tested inhibited the binding of 3H-ketanserin with KI values generally greater than those observed for the D-1 receptor, but less than those for the D-2 receptor. When this serotonergic activity was correlated to the D-1 activity, the resulting coefficient was 0.84, indicating a strong correlation between the two activities. Conversely, the 5HT-2 activity did not show a good correlation with the D-2 activity. To further test the significance of the 5HT-2 binding of the SCH 23390, in vivo binding studies were performed using 125I-SCH 38840 in the frontal cortex, an area containing both D-1 and 5HT-2 receptors. The in vivo binding of 125I-SCH 38840 to frontal cortex exhibited peak levels one hour following subcutaneous administration, similar to the time course previously observed in striatum. The binding was both D-1 and tissue specific. Competition studies with selected standards demonstrated that inhibition of the binding to frontal cortex, in contrast to the inhibition observed in the striatum, exhibited a Hill coefficient less than unity, implying interaction at more than one receptor subtype. When SCH 23390 and ketanserin were administered simultaneously, the inhibition of the in vivo binding of 125I-SCH 38840 to striatum was not different than that observed with SCH 23390, alone. However, the inhibition of binding to frontal cortex was significantly greater than that demonstrated with either SCH 23390 or ketanserin, alone, suggesting that 125I-SCH 38840 was binding to both D-1 and 5HT-2 receptors, in vivo.  相似文献   

13.
As shown by autoradiography, peripheral injections of N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ) induced a dose-dependent decrease of [3H]SCH 23390 and [3H]prazosin high-affinity binding sites in the rat prefrontal cortex. EEDQ showed similar efficacy in inactivating cortical and striatal dopamine (DA) D1 receptors, whereas prazosin-sensitive alpha 1-adrenergic receptors were more sensitive to the action of the alkylating agent, as for all doses of EEDQ tested (from 0.8 to 3 mg/kg, i.p.), the decrease in cortical [3H]SCH 23390 binding was less pronounced than that of [3H]prazosin. The effects of EEDQ on [3H]SCH 23390 binding and DA-sensitive adenylate cyclase activity were then simultaneously compared in individual rats. In the striatum, whatever the dose of EEDQ used, the decrease of DA-sensitive adenylate cyclase activity was always lower than that of D1 binding sites, suggesting the occurrence of a large proportion of spare D1 receptors. In the prefrontal cortex, a significant increase in DA-sensitive adenylate cyclase activity was observed in rats treated with a low dose of EEDQ (0.8 mg/kg), this effect being associated with a slight reduction in [3H]SCH 23390 binding sites (-20%). Parallel decreases in the enzyme activity and D1 binding sites were observed with higher doses. The EEDQ-induced supersensitivity of DA-sensitive adenylate cyclase did not occur in rats in which the decrease in [3H]prazosin binding sites was higher than 35%.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Abstract

Chronic treatment with the D1 and D2 dopamine receptor antagonists SCH 23390 (0.5 mg/kg) and haloperidol decanoate (25 mg/kg) caused an up-regulation in D1 and D2 receptor densities, respectively, with no change in KD. Dopamine (20 μM) interacted with both receptor subtypes in a mixed competitive/non-competitive manner, causing a reduction in ligand binding affinity and an apparent decrease in receptor density. In the presence of dopamine, both vehicle-treated and SCH 23390-treated striatal preparations showed a significant loss in affinity for 3H-SCH 23390 binding to D1 receptors and a decrease in D1 receptor density of approximately 26%. Similarly, dopamine caused a substantial loss in 3H-spiperone binding affinity to D2 receptors and a 46% decrease in Bmax in both vehicle-treated and haloperidol-treated membranes. Thus, receptor up-regulation does not appear to alter the mode of interaction of dopamine with rat striatal dopamine receptors.  相似文献   

15.
A frequent side effect in the long-term treatment of schizophrenia with the dopamine D2 antagonist haloperidol (HAL) is the appearance of tardive dyskinesia or, in animals, of repetitive involuntary vacuous chewing movements (VCMs). In rats, chronic HAL-induced or D1 receptor-stimulated VCMs are suppressed by D1 antagonists, suggesting that this behavioral supersensitivity is mediated by D1 receptors. The goal of this study was to investigate in vivo the possible relationship between D1 receptor binding and D1-mediated behavioral supersensitivity, after subchronic HAL treatments. D1 agonist R-SKF 82957 and antagonist SCH 23390, both labeled with carbon-11, were used to assess in vivo D1 receptor binding. Rats were treated with HAL (1.5 mg/kg, i.p.) or vehicle for 21 days, followed by a 4 day washout period. No significant difference was found in the regional brain binding of either radioligand. D1 receptor-mediated behaviors including VCMs, grooming, and rearing were measured in control or HAL-treated rats. VCMs were significantly increased in HAL-treated rats, suggesting D1 receptor stimulation and possibly receptor supersensitivity. This study failed to link the purported D1 receptor-mediated behaviors with in vivo receptor binding measures of R-[11C]SKF 82957 or [11C]SCH 23390 in rat brain regions.  相似文献   

16.
The effect of neurotensin on binding characteristics of dopamine D1 receptors was examined in the rat striatal membranes through radioreceptor assay. Neurotensin or its analogs were added to incubation medium of[3H]SCH 23390 saturation or dopamine/[3H]SCH 23390 inhibition experimental systems. Neurotensin did not modulate D1 antagonist binding but converted a part of D1 agonist high affinity binding sites to a low affinity state. Neurotensin8–13 had the same potency as neurotensin itself, whereas neurotensin1–8 had only weak activity in modulating D1 agonist binding. GTP and neurotensin had the same effect on D1 agonist binding. However, when both neurotensin and GTP were added, the result was the same as with either alone.

These data suggest that neurotensin modulates the functional state of D1 receptors probably via a GTP binding protein in the rat striatum.  相似文献   


17.
The binding of the D1 antagonist SCH23390 to membrane preparations from rat cerebral cortex was examined using enantiomers of dopamine agonists and antagonists to compete with the bound [3H]SCH23390 at its Kd value. The competition curves were compared with those obtained with preparations from the neostriatum. The results demonstrate that specific [3H]SCH23390 binding in the cerebral cortex has the same pharmacological profile as in the neostriatum, so that this radioligand can be used to label dopamine D1 receptors in brain regions with a sparse dopaminergic innervation.  相似文献   

18.
SCH-23390 is a high-affinity antagonist selective for D1 dopamine receptors (Ki = 2.5 nM). It does not contain a functional group that can be conveniently coupled to commercially available resins for affinity chromatography or to prepare photolabels for photoaffinity labeling of receptors. To construct an affinity resin for purification of dopamine D1 receptors, an aldehyde analogue of SCH-23390, (+/-)-7-chloro-8-hydroxy-1-(4'-formylphenyl)-3-methyl-2,3,4,5-tetrahydro -1H- 3-benzazepine (ASCH), was synthesized. 8-Methoxy-1-(4'-bromophenyl)-SCH-23390 was lithiated, formylated, and O-demethylated to form the aldehyde. NMR and IR analyses were performed to characterize the product. Assays were performed with the radioligand [125I]SCH-23982 to define the biological activity of the aldehyde. ASCH displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 7.1 nM. ASCH has been coupled through the aldehyde group on the phenyl ring to diaminodipropylamine-agarose for affinity chromatography. After solubilization of caudate membranes in 1% digitonin, the affinity resin retained binding sites for [125I]SCH-23982 that were eluted with 10 mM SCH-23390. The aldehyde was also covalently coupled to biotin hydrazide for fluorescence labeling of dopamine D1 receptors. The biotin-conjugated aldehyde of SCH-23390 displaced [125I]SCH-23982 binding from caudate membranes with a Ki value of 9.3 nM.  相似文献   

19.
Identification of D1-like dopamine receptors on human blood platelets   总被引:1,自引:0,他引:1  
Dopamine is able to inhibit the epinephrine-induced aggregation of human blood platelets, but the mechanism of action has not been elucidated. In this study we report that membranes from human blood platelets possess high affinity, saturable and stereoselective binding sites for the D1 dopamine receptor antagonist (3H) SCH 23390. (3H) SCH 23390 appeared to label a single class of binding sites with a Bmax of 18.6 +/- 1.6 fmol/mg protein and a KD of 0.8 nM. The potencies of different dopaminergic antagonists and agonists in displacing (3H) SCH 23390 from blood platelet membranes were similar to those obtained for striatal membranes. Unlike the classically defined D1 receptors, e.g. those in striatum, the D1 receptor sites on platelets appeared not to be coupled to the adenylate cyclase system, hence the term "D1-like". The D1 agonist SKF 38393 was more potent than dopamine in inhibiting platelet aggregation induced by epinephrine, and the effects of dopamine and SKF 38393 were prevented by SCH 23390. These results suggest that the inhibitory action of dopamine on the epinephrine-induced platelet aggregation is mediated through these D1-like receptors.  相似文献   

20.
The biochemical properties of central nervous system (CNS) dopamine (DA) D1 and D2 receptors were examined using the specific antagonists [3H]SCH23390 and [3H]raclopride, respectively. There is a different participation of sulfhydryl (-SH) and disulfide (-SS-) groups in the binding site and/or coupling to second messenger systems of D1 and D2 receptors. The ionic studies with [3H]SCH23390 showed slight agonist and antagonist affinity shifts for the D1 receptor. On the other hand, the D2 receptor is very sensitive to cations; even if lithium and sodium influence specific [3H]raclopride binding in a similar manner, there appear to be quantitative differences between these two ions that cannot be explained by surface charge mechanisms. The distribution of D1 and D2 receptors was heterogenous in both species, with the greatest densities in the neostriatum, where the highest concentrations of DA and metabolites were measured. Regions with low endogenous DA content (cerebral cortex and hippocampus) had lower densities of DA receptors. Furthermore, these binding sites were differentially localized within the various regions, and there were substantially more D1 than D2 receptors. The functional significance and heterogeneities in the distribution of D1 and D2 receptors can be related to dopaminergic innervation and turnover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号