首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
3H-Flunitrazepam (FNZP) binding was examined in a crude membrane fraction obtained from rat interscapular brown adipose tissue (IBAT). A single population of binding sites was apparent with dissociation constant (KD) = 0.47 +/- 0.04 microM and maximal number of binding sites (Bmax) = 31 +/- 5 pmol.mg prot-1. From the activity of several benzodiazepine (BZP) analogs to compete for the binding, the peripheral nature of FNZP binding was tentatively established. Similar BZP binding sites were detectable in isolated IBAT mitochondria. Exposure of rats to 4 degrees C for 15 days decreased Bmax significantly without affecting KD. Cold-induced decrease in Bmax of BZP binding was prevented by surgical IBAT denervation. Denervation prevented or impaired the increased activity of the mitochondrial markers succinate dehydrogenase and malate dehydrogenase in IBAT of cold-exposed rats, but did not affect monoamine oxidase activity. Hypophysectomy of rats decreased significantly both KD and Bmax of IBAT BZP binding. Thyroidectomy, adrenalectomy or ovariectomy did not affect IBAT BZP binding parameters. The BZP analogs diazepam, clonazepan and Ro 5-4864 decreased significantly guanosine 5'-diphosphate binding (GDP) in IBAT mitochondria while co-incubation of Ro 5-4964 or clonazepam with the peripheral type BZP antagonist PK 11195 did not modify BZP activity on GDP binding. Our results indicate that BZP binding in rat IBAT may belong to the peripheral type, is decreased by a cold environment through activation of peripheral sympathetic nerves and is affected by hypophysectomy. BZP and GDP binding in IBAT mitochondria seem not to be functionally related.  相似文献   

2.
Phenobarbital (PB) was administered to pregnant mice during days 9-21 of gestation. Forebrain and cerebellar [3H]flunitrazepam ([3H]FLU) binding was assayed in the offspring at birth and at 21 days of age. Prenatal treatment produced a decrease in the number (Bmax) of [3H]FLU receptors in both the forebrain and cerebellum at birth. A small decrease in the [3H]FLU dissociation constant (KD) values in the forebrain was also detected at birth, but no changes were seen in the [3H]FLU KD values in the cerebellum. No changes were observed in forebrain and cerebellar [3H]FLU Bmax or KD values at 21 days of age, indicating that the effects of prenatal exposure to PB on [3H]FLU binding are eliminated during the postnatal development of the forebrain and cerebellum. The receptor affinity for the triazolopyridazine CL 218,872, which distinguishes the type I and type II benzodiazepine (BDZ) receptors, was not altered by prenatal PB treatment. The coupling of the BDZ receptor to the gamma-aminobutyric acid and pentobarbital binding sites was unaffected by exposure to PB in utero.  相似文献   

3.
Benzodiazepine receptor binding was examined in rats at 3 stages of amygdaloid kindling (i.e., initial afterdischarge, Stage 3 and Stage 5) immediately or 24 hr after seizure. 3H-diazepam binding site density (Bmax) was significantly increased 24 hr after Stage 3 and Stage 5 kindled seizures in the hippocampus but not in the amygdala. There were no significant differences in the dissociation constants (KD) between kindled and control rats at any time point examined for either brain region. These results demonstrate that changes in benzodiazepine binding are observed with partial kindled seizures (i.e., Stage 3), indicating that generalized seizures are not prerequisite to increased benzodiazepine receptor site density.  相似文献   

4.
The allosteric modulation of t-[35S]butylbicyclophosphorothionate binding by flunitrazepam was studied in well-washed brain membranes prepared from control and swim-stressed rats. Swim stress has been reported to decrease the KD and increase the Bmax of this radioligand. Flunitrazepam increased radioligand binding with equal potency (EC50 approximately 11 nM) in both groups, but the maximal enhancement (efficacy) produced by this drug was significantly greater in control than in swim-stressed rats. Ro 15-1788 (a benzodiazepine receptor antagonist) blocked the effect of flunitrazepam on t-[35S]butylbicyclophosphorothionate binding in both groups. This increase in t-[35S]butylbicyclophosphorothionate binding resulted from a significant reduction in KD with no alteration in Bmax. The KD values obtained in cortical membranes of control rats after addition of flunitrazepam were not significantly different from those in the swim-stressed group. Preincubation of cortical homogenates from control animals with flunitrazepam prior to extensive tissue washing resulted in Bmax and KD values of t-[35S]butylbicyclophosphorothionate similar to those obtained in stressed animals. These findings suggest that stress and flunitrazepam may share a common mechanism in regulating t-[35S]butylbicyclophosphorothionate binding and support the concept that stress-induced modification of gamma-aminobutyric acid (GABA)-gated chloride channels in the CNS results from the release of an endogenous modulator (with benzodiazepine-like properties) of the benzodiazepine-GABA receptor chloride ionophore receptor complex.  相似文献   

5.
Bicuculline Up-Regulation of GABAA Receptors in Rat Brain   总被引:2,自引:2,他引:0  
Effects of acute and subacute administration of bicuculline on [3H]muscimol, [3H]flunitrazepam, and t-[35S]butylbicyclophosphorothionate ([35S]TBPS) binding to various brain regions were studied in Sprague-Dawley rats. Acute administration of bicuculline affected neither the KD nor the Bmax of the three receptor sites. In rats treated subacutely with bicuculline (2 mg/kg, i.p., daily for 10 days), [3H]muscimol binding was increased in the frontal cortex, cerebellum, striatum, and substantia nigra. Scatchard analysis revealed that subacute treatment of rats with bicuculline resulted in a significantly lower KD of high-affinity sites in the striatum and in a significantly lower KD of high- and low-affinity sites in the frontal cortex. In the cerebellum, two binding sites were apparent in controls and acutely treated animals; however, only the high-affinity site was defined in subacutely treated animals, with an increase in the Bmax value. Triton X-100 treatment of frontal cortical membranes eliminated the difference in [3H]muscimol binding between control and subacute bicuculline treatments. On the other hand, [3H]muscimol binding was significantly increased in the cerebellum from bicuculline-treated animals even after Triton X-100 treatment. The apparent Ki of bicuculline for the GABAA receptor was also decreased in the frontal cortex and the striatum following the treatment. However, subacute administration of bicuculline affected neither the KD nor the Bmax of [3H]flunitrazepam and [35S]TBPS binding in the frontal cortex and the cerebellum. These results suggest that GABAA receptors are up-regulated after subacute administration of bicuculline, with no change in benzodiazepine and picrotoxin binding sites.  相似文献   

6.
Benzodiazepine receptors were investigated in a cell line of human pituitary cells (18-54,SF) grown in serum-free medium. Preparations of 18-54,SF whole cells and cell membranes were shown to possess saturable [3H]diazepam binding sites. Membrane sites were found to have a KD of 20 nM for diazepam while whole cells possessed a twofold higher value. The KD values determined from Rosenthal, Hill, and kinetic analyses were consistent for each preparation. Whole-cell binding of [3H]diazepam was observed to be more stable than binding to membranes at higher temperatures (37 degrees C) and when longer incubation times (60 min) were employed at 4 degrees C. The rank order potency of various benzodiazepines to inhibit [3H]diazepam binding to whole cells and membranes was Ro 5-4864, flunitrazepam, diazepam, and clonazepam. Representatives of other drug classes did not inhibit this benzodiazepine binding. When 18-54,SF cells were grown for 24 h with 100 nM diazepam and then extensively washed membranes prepared, the KD for diazepam increased to 38 nM whereas the Bmax was unchanged when compared with untreated controls. Overall, these findings indicate that pituitary cells possess a peripheral-type benzodiazepine receptor and that the whole cell receptor differs quantitatively when compared with the membrane receptor.  相似文献   

7.
We compared hemodynamics with [3H]nitrendipine (calcium channel) binding to cardiac membranes from Bio 14.6 cardiomyopathic Syrian hamsters at 4 and 10 months with their F1B controls. A 50% increase in the number (Bmax) of nitrendipine binding sites (calcium channels) was seen only in the 4 month old myopathic vs controls (Bmax = 468 +/- 11 vs 309 +/- 10 fmol/mg prot with no change in affinity (KD) (KD = .65 +/- .12 vs .75 +/- .14 nM), while no differences in Bmax or KD were seen at 10 months (Bmax = 375 +/- 9 vs 362 +/- 7 fmol/mg prot/KD = .82 +/- .18 vs .89 +/- .17 nM) myopathic vs control respectively. Hemodynamic studies revealed no significant differences in cardiac output, cardiac index, stroke volume, heart rate, mean arterial pressure, peripheral resistance, body weight, heart weight at 4 months, but a significant decrease in peripheral resistance (1120 +/- 360 vs 2080 +/- 240) increase in body weight (118 +/- 2 vs 94 +/- 2 grams) and heart weight (97 +/- 5 vs 78 +/- 2 gms/100 gms body weight) in 10 month myopathic vs control animals. We conclude that the onset of cardiomyopathy at 4 months is associated with a selective increase in calcium channel binding sites and heart failure at 10 months is associated with a relative decrease in these sites.  相似文献   

8.
The characteristics of [3H]Ro 5-4864 binding to "peripheral" benzodiazepine receptors (PBR) in the central nervous system and peripheral tissues were examined after chemical sympathectomy with 6-hydroxydopamine (6-OHDA). One week after the intracisternal administration of 6-OHDA, the number of [3H]Ro 5-4864 binding sites (Bmax) in the hypothalamus and striatum increased 41 and 50%, respectively, concurrent with significant reductions in catecholamine content. An increase (34%) in the Bmax of [3H]Ro 5-4864 to cardiac ventricle was observed one week after parenteral 6-OHDA administration. In contrast, the Bmax of [3H]Ro 5-4864 to pineal gland decreased 48% after 6-OHDA induced reduction in norepinephrine content. The Bmax values for [3H]Ro 5-4864 binding to other tissues (including lung, kidney, spleen, cerebral cortex, cerebellum, hippocampus and olfactory bulbs) were unaffected by 6-OHDA administration. The density of pineal, but not cardiac PBR was also reduced after reserpine treatment, an effect reversed by isoproterenol administration. These findings demonstrate that alterations in sympathetic input may regulate the density of PBR in both the central nervous system and periphery in a tissue specific fashion.  相似文献   

9.
Benzodiazepine receptors on human blood platelets   总被引:3,自引:0,他引:3  
Binding studies conducted on membrane preparation from human platelets using (3H) Ro5-4864 and (3H) diazepam showed specific and saturable binding. Scatchard analysis revealed a single class of binding sites with KD = 10.8 +/- 0.9 nM and Bmax = 775 +/- 105 fmol/mg protein for (3H) Ro5-4864 and KD = 10.5 +/- 1.1 nM and Bmax = 133 +/- 19 fmol/mg for (3H) diazepam. We were unable to detect any GABA binding site on crude membrane preparation, nor did GABA enhance the binding of (3H) Ro5-4864 or (3H) diazepam. This suggests that benzodiazepine receptors are uncoupled to GABA system on human platelets. Ro15-1788, a specific antagonist for "central type" benzodiazepine (BDZ) binding sites was inactive in displacing (3H) Ro5-4864 from membrane receptors, while PK 11195 (a specific ligand for the "peripheral type" receptor) was the most potent of the drugs tested in inhibiting (3H) Ro5-4864 binding. These results indicate that human blood platelets bear "peripheral-type" BDZ receptor. Moreover, we could not detect any (3H) propyl beta carboline specific binding on platelet membranes. Results on benzodiazepine receptors on human circulating lymphocytes are also reported and similarity in pharmacological properties with platelet benzodiazepine receptors is suggested.  相似文献   

10.
Decreased benzodiazepine receptor binding in amygdala-kindled rat brains   总被引:2,自引:0,他引:2  
3H-Flunitrazepam (3H-FLU) binding was measured in multiple brain regions of amygdala-kindled rats two weeks following the sixth Stage 5 convulsion. As compared to 'yoked' controls, the kindled animals displayed significant reductions in 3H-FLU binding in the ipsilateral cortex (20%) and in the hypothalamus (20%). Scatchard plots revealed that these reductions were due to changes in the maximal number of available binding sites (Bmax) rather than to alterations in receptor affinity (KD). No significant changes were found in the contralateral cortex, or in either the contralateral or ipsilateral amygdala, hippocampus or striatum. These data suggest that kindling is associated with long-lasting changes in the benzodiazepine receptor system and possibly with related changes in GABA-mediated neural inhibition.  相似文献   

11.
Saturable binding site for 3H-flunitrazepam (KD = 43 +/- 7 nM, Bmax = 391 +/- 58 fmoles/cell, i.e. 250,000 sites/cell) is characterized on Mouse peritoneal inflammatory macrophages. The affinity for different ligands (PK 11195 greater than Ro 5-4864 greater than diazepam greater than flunitrazepam greater than clonazepam greater than Ro 15-1788) shows that this site is of peripheral type. In vivo the humoral response in Mice to Sheep red blood cells was stimulated by administration of 1 mg/kg of PK 11195 (+85%), Ro 5-4864 (+80%) and diazepam (+58%). Clonazepam and Ro 15-1788 are devoid of activity. This suggests that molecules which show affinity for the "peripheral type" benzodiazepine binding site might modulate the immune response.  相似文献   

12.
[3H]Flunitrazepam binds to intact and homogenized mouse astrocytes and neurons in primary cultures. In intact cells, the binding is to a single, high-affinity, saturable population of benzodiazepine binding sites with a KD of 7 nM and Bmax of 6,033 fmol/mg protein in astrocytic cells and a KD of 5 nM and Bmax of 924 fmol/mg protein in neurons. After homogenization, the Bmax values decrease drastically in both cell types, but most in astrocytes. The temperature and time dependency are different for the two cell types, with a faster association and dissociation in astrocytes than in neurons and a greater temperature sensitivity in the astrocytes. Moreover, flunitrazepam binding sites on neuronal and astrocytic cells have different pharmacological profiles. In intact astrocytic cells, Ro 5-4864 (Ki = 4 nM) is the most potent displacing compound, followed by diazepam (Ki = 6 nM) and clonazepam (Ki = 600 nM). In intact neurons, the relative order of potency of these three compounds is different: diazepam (Ki = 7 nM) is the most potent, followed by clonazepam (Ki = 26 nM) and Ro 5-4864, which has little effect. After homogenization the potency of diazepam decreases. We conclude that both neuronal and astrocytic cells possess high-affinity [3H]flunitrazepam binding sites. The pharmacological profile and kinetic characteristics differ between the two cell types and are further altered by homogenization.  相似文献   

13.
Fluorescein conjugates of the high-affinity benzodiazepine receptor ligands Ro 15-1788 and Ro 7-1986 were synthesized. The binding of these fluorescent ligands (BD 621 and BD 607) to benzodiazepine receptors was characterized by direct fluorescence measurement. Both the equilibrium dissociation constants (KD) of BD 621 and BD 607 and the maximum number of binding sites (Bmax) estimated by fluorescence monitoring were consistent with values obtained by using radioligand binding techniques. The binding of BD 621 and BD 607 assessed by fluorescence measurement was reversible, abolished by photoaffinity labeling with Ro 15-4513, and unaffected by a variety of substances that do not bind to benzodiazepine receptors. The potencies of chemically diverse benzodiazepine receptor compounds to inhibit fluorescent ligand binding were highly correlated (r = 0.94, P less than 0.001), with potencies obtained from radioligand binding techniques. These findings demonstrate the feasibility of using direct fluorescence measurement techniques to quantitate ligand-receptor interactions.  相似文献   

14.
Nicotine induced a phasic contraction in the rabbit urinary bladder. The response was abolished by hexamethonium and partially reduced by atropine and capsaicin. Simultaneous atropine and capsaicin treatment did not abolish the contraction. These findings suggest that the response to nicotine is due to acetylcholine, tachykinins, and unknown mediator release. In contrast, nicotine-induced contraction diminished following the chronic nicotine treatment without a change of its pharmacological properties. These results suggest the possibility that chronic nicotine treatment causes a decrease in nicotinic receptor numbers. Therefore, the binding properties of (-)-[3H]nicotine on rabbit urinary detrusor muscle membrane fractions were studied to evaluate the effects of chronic nicotine treatment on nicotinic receptors. Specific (-)-[3H]nicotine binding reached saturation and Scatchard plots were curvilinear, suggesting the existence of two different affinity sites for (-)-[3H]nicotine. Dissociation constants (KD) and maximum binding sites (Bmax) were KD1 = 4.91 +/- 1.88 nM, Bmax1 = 2.42 +/- 0.22 fmol/mg protein and KD2 = 263 +/- 56 nM, Bmax2 = 25.0 +/- 4.3 fmol/mg protein. In urinary bladder membrane fractions from chronic nicotine-treated rabbits, KD and Bmax values were KD1 = 3.96 +/- 0.38 nM, Bmax1 = 1.07 +/- 0.25 fmol/mg protein and KD2 = 249 +/- 12 nM, Bmax2 = 10.8 +/- 1.5 fmol/mg protein. Dissociation constants for both sites following chronic nicotine treatment did not change but maximum binding site numbers for both sites significantly decreased (p less than 0.05). These results suggest that the decrease in contractile response evoked by nicotine after chronic nicotine treatment in rabbit urinary bladder is due to a decrease in numbers of nicotinic receptors.  相似文献   

15.
Parameters affecting the binding of [3H]glycine to membrane fractions isolated from the cerebral cortex, midbrain, cerebellum, medulla oblongata, and spinal cord of the rat were investigated in a Na+-free medium. A [3H]glycine binding assay was established in which the binding was specific, saturable, pH-sensitive, and reversible. Conditions were chosen in an effort to minimize binding to glycine uptake sites. From data on specific [3H]glycine binding Scatchard plots were prepared and the KD and Bmax values were calculated. Two glycine binding sites (high and low affinity) were identified only in the medulla (KD: 44, 211 nM; Bmax: 361, 1076 fmol/mg protein) and spinal cord (KD: 19, 104 nM; Bmax: 105, 486 fmol/mg protein). The ranges of the KD and Bmax values for the other three areas studied were 59 to 144 nM and 882 to 3401 fmol/mg protein, respectively. When the glycine content of each area, expressed as fmol/neuron, was plotted against the respective KD (high affinity), a negative correlation was found (r = --0.90; p less than 0.05). A similar negative correlation was found between the glycine content and Bmax (r = --0.88; p less than 0.05). Hill plots indicated a slope of essentially 1.0 for all areas. GABA, taurine, strychnine, diazepam, bicuculline, and imipramine had little or no effect on [3H]glycine binding.  相似文献   

16.
Synthetic n-butyl beta-carboline-3-carboxylate, an endogenous central benzodiazepine receptor inhibitor found in brain, was tritium-labeled from the butenyl ester. Binding of this [3H]beta-carboline was concentrated particularly in the synaptosomal membrane fraction of the cerebral cortex; this fraction showed a single type of high-affinity site (KD = 2.7 +/- 0.1 nM) with a Bmax of 1.16 +/- 0.08 pmol/mg of protein. The number of sites labeled was about half of that obtained with [3H]flunitrazepam binding (Bmax = 2.36 +/- 0.06 pmol/mg of protein). On the other hand, in the cerebellum, both ligands bound to practically the same number of sites. When [3H]flunitrazepam binding was done in the presence of 10(-11)-10(-5) M butyl beta-carboline, the differences between the two brain regions were more apparent. In cerebellar membranes the data fitted a straight line in the Eadie-Hofstee plot; this finding and a Hill number near unity suggest a single type of binding site. In the cortical membranes the data of binding fitted a concave curve, and the Hill number was 0.6. These are characteristics of two types of binding sites with different affinities (KD1 = 0.6-1.5 nM and KD2 = 12-18 nM). The differentiation of a high- and low-affinity site in the cerebral cortex was corroborated by experiments in which [3H]butyl beta-carboline binding was displaced by the triazolopyridazine CL 218,872. These results demonstrate that in the cerebral cortex there are two subtypes of sites (1 and 2) of central benzodiazepine receptors and that CL 218,872 binds preferentially to subtype 1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
The [3H]PK 11195, 1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-3-isoquinolinecarboxamide, binding sites in rat cardiac membranes are saturable, with high affinity, specific GABA-independent and correspond to the peripheral type of benzodiazepine. The order of potency of displacing agents was: PK 11195 greater than RO5-4864 greater than dipyridamole greater than diazepam greater than clonazepam. The Bmax obtained with [3H]PK 11195 was equivalent of the Bmax obtained with [3H]RO5-4864 in the same experimental conditions. However thermodynamic analysis indicates that the [3H]PK 11195 binding was entropy driven whereas the [3H]RO5-4864 binding was enthalpy driven. Consequently PK 11195 might be an antagonist of these binding sites and RO5-4864 an agonist or a partial agonist. The simultaneous use of both drugs might help to elucidate the physiological relevance of peripheral benzodiazepine binding sites.  相似文献   

18.
The specific binding of L-N6-[3H]phenylisopropyladenosine (L-[3H]PIA) to solubilized receptors from rat brain membranes was studied. The interaction of these receptors with relatively low concentrations of L-[3H]PIA (0.5-12.0 nM) in the presence of Mg2+ showed the existence of two binding sites for this agonist, with respective dissociation constant (KD) values of 0.24 and 3.56 nM and respective receptor number (Bmax) values of 0.28 +/- 0.03 and 0.66 +/- 0.05 pmol/mg of protein. In the presence of GTP, the binding of L-[3H]PIA also showed two sites with KD values of 24.7 and 811.5 nM and Bmax values of 0.27 +/- 0.09 and 0.93 +/- 0.28 pmol/mg of protein for the first and the second binding site, respectively. Inhibition of specific L-[3H]PIA binding by 1,3-dipropyl-8-cyclopentylxanthine (DPCPX) (0.1-300 nM) performed with the same preparations revealed two DPCPX binding sites with Ki values of 0.29 and 13.5 nM, respectively. [3H]DPCPX saturation binding experiments also showed two binding sites with respective KD values of 0.81 and 10.7 nM and respective Bmax values of 0.19 +/- 0.02 and 0.74 +/- 0.06 pmol/mg of protein. The results suggest that solubilized membranes from rat brain possess two adenosine receptor subtypes: one of high affinity with characteristics of the A1 subtype and another with lower affinity with characteristics of the A3 subtype of adenosine receptor.  相似文献   

19.
Gamma-aminobutyric acidA/benzodiazepine receptor binding sites and the N-methyl-D-aspartate subclass of glutamate receptor sites were assessed in synaptic plasma membrane homogenates of cerebral cortex tissue obtained at autopsy from cirrhotic and noncirrhotic alcoholic patients and matched control subjects. The alcoholic patients consumed an average of greater than 80 g of ethanol/day, the control subjects less than 20 g/day. Postmortem delays up to approximately 100 h caused no significant loss of any of the binding sites; the patient and subject groups were closely matched for age. The affinities (KD) of the receptor sites did not differ between the patient and subject groups, nor between cortical regions. Using three different radioligands ([3H]muscimol, [3H]flunitrazepam, and [3H]diazepam), the gamma-aminobutyric acidA/benzodiazepine receptor complex was found to have greater density (Bmax) in superior frontal gyrus in alcoholic patients (which selectively shows morphological change in alcoholic patients), but was unchanged in motor cortex. Alcoholic patients with cirrhosis had much less pronounced changes. The density of the N-methyl-D-aspartate subclass of glutamate receptors, assessed with [3H]MK-801, did not vary across patient and subject groups.  相似文献   

20.
The present study shows that N-[3H]methylcarbamylcholine ([3H]MCC) binds to a single population of high-affinity/low-density (KD = 5.0 nM; Bmax = 8.2 fmol/mg of protein) nicotinic binding sites in the rat cerebellum. Also, there exists a single class of high-affinity binding sites (KD = 4.8 nM; Bmax = 24.2 fmol/mg of protein) in the cerebellum for the M1 specific muscarinic ligand [3H]pirenzepine. In contrast, the M2 ligand, [3H]AF-DX 116, appears to bind to two classes of binding sites, i.e., a high-affinity (KD = 3 nM)/low-capacity (Bmax = 11.7 fmol/mg of protein) class, and a second class of lower affinity (KD = 28.4 nM) and higher capacity (Bmax = 36.3 fmol/mg of protein) sites. The putative M3 selective ligand [3H]4-diphenylacetoxy-N-methylpiperidine also binds to two distinct classes of binding sites in cerebellar homogenates, one of high affinity (KD = 0.5 nM)/low capacity (Bmax = 19.5 fmol/mg of protein) and one of low affinity (KD = 57.5 nM)/high capacity (Bmax = 140.6 fmol/mg of protein). In experiments which tested the effects of cholinergic drugs on acetylcholine release from cerebellar brain slices, the nicotinic agonist MCC enhanced spontaneous acetylcholine release in a concentration-dependent manner, and the maximal increase in acetylcholine release (59.0-68.0%) occurred at 10(-7) M. The effect of MCC to increase acetylcholine release was Ca2+-dependent and tetrodotoxin-insensitive, suggesting an action on cholinergic terminals. Also, the MCC-induced increase in acetylcholine release was effectively antagonized by dihydro-beta-erythroidine, d-tubocurarine, and kappa-bungarotoxin, but was insensitive to either atropine or alpha-bungarotoxin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号