首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fecal prevalence of Escherichia coli O157 in ruminants is highest in the summer decreasing to very low levels in the winter. We hypothesize that this seasonal variation is a result of physiological responses within the host animal to changing day-length. To determine the effects of melatonin (MEL) on fecal shedding of E. coli O157:H7 in cattle, eight crossbred beef steers identified as shedding E. coli O157:H7, were allotted to treatment: control or MEL (0.5 mg/kg body weight (BW); 1×) administered orally daily for 7 days. After a 5-day period of no treatment, a second MEL dose (5.0 mg/kg BW; 10×) was administered daily for 4 days. Fecal samples were collected daily for qualification of E. coli O157:H7. No differences (P > 0.10) were observed in the percentage of E. coli O157:H7 positive fecal samples in steers receiving the 1× MEL dose, however the 10× dose decreased (P = 0.05) the percentage of fecal samples E. coli O157:H7 positive. Serum MEL concentrations were higher in the 1×, but not 10×, treated animals compared to control animals. Although it is difficult to explain, this may be a result of decreasing day-length increasing serum melatonin concentrations that may have masked any treatment effect on serum melatonin. In a second similar experiment, a second group of cattle (heifers and steers) were administered tryptophan (TRP) over a 17-day experimental period (5 g/head/day for 10 days followed by 10 g/head/day for 7 days). Tryptophan had no effect (P > 0.20) on the percentage of fecal samples positive for E. coli O157. Serum TRP (P < 0.05), but not MEL (P > 0.20), concentrations were elevated in TRP-treated animals. The decrease in the number of positive fecal samples observed in the first experiment, may be related to gastrointestinal MEL, affected by the 10×, but not 1× MEL dose.  相似文献   

2.
To assess the sensitivity of direct plating of bovine fecal samples for detection of Escherichia coli O157:H7, calves (n = 28) were orally inoculated with 109 colony-forming units (cfu) per calf of a mixture of three strains of nalidixic acid-resistant E. coli O157:H7, and fecal samples were collected for analysis. One-gram samples from inoculated calves were mixed with 9 mL of Gram-negative broth with vancomycin, cefixime, and cefsoludin. From this suspension, serial dilutions were made (10−1 to 10−4) and spread plated in triplicate on Sorbitol MacConkey agar with nalidixic acid for enumeration of E. coli O157:H7 in fecal samples. Direct plating samples were streaked for isolation on Sorbitol MacConkey agar with cefixime, and tellurite (SMACct). After incubation overnight at 37°C, morphologically typical colonies from direct streak plates were plated onto blood agar and incubated overnight at 37°C; then an indole test was performed on each colony. Indole-positive colonies were confirmed by O157 agglutination and were then plated on SMAC agar with 20 μg/mL nalidixic acid (SMACnal) to confirm nalidixic acid resistance. Overall sensitivity of detection was 32.5% (110/338 samples). Sensitivity to detect fecal samples shedding at above 5 × 104 cfu/g was 83% (71/86 samples). Based on these data, direct plating of fecal samples might be an effective way to identify cattle that are likely to be shedding E. coli O157 at high levels.  相似文献   

3.
The effects of the β-agonist ractopamine, recently approved for use in feedlot cattle to improve carcass quality and performance, on fecal shedding Escherichia coli O157:H7 and Salmonella in feedlot cattle was examined. In the first study, 20 feedlot steers and heifers were randomly assigned to receive ractopamine or no ractopamine (control) by way of oral bolus for 28 days. Fecal samples were collected daily, and shedding of E. coli O157:H7 determined. When examined during the entire 28-day experimental period, ractopamine decreased (P = 0.0006) the percentage of cattle shedding E. coli O157:H7 (58% vs. 42% for control and ractopamine treatments, respectively). A second study was conducted in a commercial feedlot facility in the southwestern United States. Eighteen pens of cross-bred beef heifers (approximately 100 head/pen and 9 pens/treatment) were randomly assigned to receive either 0 (control) or 200 mg ractopamine/head·d–1. Fresh fecal samples (30/pen) were collected off the pen floor before ractopamine supplementation and again after approximately 28 days of ractopamine supplementation (within a few days of slaughter); the samples were cultured for E. coli O157:H7 and Salmonella. The percentage of animals shedding E. coli O157:H7 was decreased when data were pooled across replicates (P = 0.05) in ractopamine-treated cattle compared with controls. The percentage of animals shedding Salmonella tended to be higher (P = 0.08) with the ractopamine treatment when data were pooled across replicates. Although further research is required to confirm these results, the potential food safety implications of this research are intriguing. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the United States Drug Administration and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

4.
The goal of this study was to determine whether immunosuppression plays a role in the level and duration of fecal shedding of Escherichia coli O157. Immunosuppression was induced in calves by administering dexamethasone. Six 1-week-old Holstein bull calves were injected intramuscularly with dexamethasone and orally inoculated with 109 CFU of a mixture of three nalidixic-acid resistant strains of E. coli O157:H7. Five 1-week-old Holstein bull calves that were given the same oral inoculation of E. coli O157:H7, but not the dexamethasone injections, served as controls. All calves were examined daily and fecal samples were collected three times a week for detection and enumeration of the nalidixic-acid resistant E. coli O157. Four weeks after the last calf stopped shedding, all calves were necropsied and samples from the gastrointestinal tract were taken for the detection of the nalidixic-acid resistant E. coli O157. Dexamethasone-injected calves shed at higher levels (P = 0.04) on days 4 and 7 postinoculation, but not thereafter. None of the samples collected at necropsy were positive for E. coli O157. Data from this study suggest that there may be a time-dependent relationship between dexamethasone immunosuppression and the fecal concentration of E. coli O157 but that transient immunosuppression does not appear to prolong shedding of E. coli O157.  相似文献   

5.
A cattle trial using artificially inoculated calves was conducted to determine the effect of the addition of colicinogenic Escherichia coli strains capable of producing colicin E7 (a 61-kDa DNase) to feed on the fecal shedding of serotype O157:H7. The experiment was divided into three periods. In period 1, which lasted 24 days, six calves were used as controls, and eight calves received 107 CFU of E. coli (a mixture of eight colicinogenic E. coli strains) per g of feed. Both groups were orally inoculated with nalidixic acid-resistant E. coli O157:H7 strains 7 days after the treatment started. In periods 2 and 3, the treatment and control groups were switched, and the colicinogenic E. coli dose was increased 10-fold. During period 3, which lasted as long as period 1, both groups were reinoculated with E. coli O157:H7. The numbers of E. coli O157:H7 were consistently greater in the control groups during the three periods, but comparisons within each time period determined a statistically significant (P < 0.05) difference only at day 21 of period 1. However, when the daily average counts were compared between the period 1 control group and the period 3 treatment group that included the same six animals, an overall reduction of 1.1 log10 CFU/g was observed, with a maximum decrease of 1.8 log10 CFU/g at day 21 (overall statistical significance, P = 0.001). Serotype O157:H7 was detected in 44% of the treatment group's intestinal tissue samples and in 64% of those from the control group (P < 0.04). These results indicated that the daily addition of 108 CFU of colicin E7-producing E. coli per gram of feed could reduce the fecal shedding of serotype O157:H7.  相似文献   

6.
Twelve ruminally cannulated cattle, adapted to forage or grain diet with or without monensin, were used to investigate the effects of diet and monensin on concentration and duration of ruminal persistence and fecal shedding of E. coli O157:H7. Cattle were ruminally inoculated with a strain of E. coli O157:H7 (1010 CFU/animal) made resistant to nalidixic acid (Nalr). Ruminal and fecal samples were collected for 11 weeks, and then cattle were euthanized and necropsied and digesta from different gut locations were collected. Samples were cultured for detection and enumeration of Nalr E. coli O157:H7. Cattle fed forage diets were culture positive for E. coli O157:H7 in the feces for longer duration (P < 0.05) than cattle fed a grain diet. In forage-fed cattle, the duration they remained culture positive for E. coli O157:H7 was shorter (P < 0.05) when the diet included monensin. Generally, ruminal persistence of Nalr E. coli O157:H7 was not affected by diet or monensin. At necropsy, E. coli O157:H7 was detected in cecal and colonic digesta but not from the rumen. Our study showed that cattle fed a forage diet were culture positive longer and with higher numbers than cattle on a grain diet. Monensin supplementation decreased the duration of shedding with forage diet, and the cecum and colon were culture positive for E. coli O157:H7 more often than the rumen of cattle.  相似文献   

7.
The effects of the β-agonist ractopamine, approved for use in finishing swine and cattle to improve carcass quality and performance, were examined on two important foodborne pathogens, Escherichia coli O157:H7 and Salmonella. Ractopamine, administered to sheep before and after oral inoculation with E. coli O157:H7, increased (P < 0.01) fecal shedding and tended to increase (P = 0.08) cecal populations of the challenge strain. Pigs receiving ractopamine in the diet and then experimentally infected with Salmonella Typhimurium, had decreased (P < 0.05) fecal shedding and fewer (P = 0.05) liver samples positive for the challenge strain of Salmonella. Pure cultures of E. coli O157:H7 (used in the present sheep study), E. coli O157:H19 (isolated from pigs with postweaning diarrhea), Salmonella Typhimurium (used in the present pig study), and Salmonella Choleraesuis were incubated with varying concentrations of ractopamine to determine if ractopamine has a direct effect on bacterial growth. No differences in growth rate were observed for either strain of E. coli or for Salmonella Typhimurium when incubated with increasing concentrations of ractopamine. The growth rate for Salmonella Choleraesuis was increased with the addition of 2.0 μg ractopamine/ml compared with the other concentrations examined. Collectively, these results indicate that ractopamine may influence gut populations and fecal shedding of E. coli O157:H7 and Salmonella. Because ractopamine is currently approved to be fed to finishing cattle and swine immediately before slaughter, any potential for decreasing foodborne pathogens has exciting food safety implications. Mention of trade names, proprietary products, or specific equipment does not constitute a guarantee or warranty by the United States Department of Agriculture and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

8.
The distribution of Escherichia coli O157 in bovine feces was examined by testing multiple samples from fecal pats and determining the density of E. coli O157 in immunomagnetic separation (IMS)-positive fecal samples. The density of E. coli O157 in bovine feces was highly variable, differing by as much as 76,800 CFU g−1 between samples from the same fecal pat. The density in most positive samples was <100 CFU g−1, the limit of reliable detection by IMS. Testing only one 1-g sample of feces per pat with IMS may result in a sensitivity of detection as low as 20 to 50%. It is therefore probable that most surveys have greatly underestimated the prevalence of E. coli O157 shedding in cattle and the proportion of farms with shedding cattle. The sensitivity of the detection of E. coli O157 in bovine feces can be as much as doubled by testing two 1-g samples per pat rather than one 1-g sample.  相似文献   

9.
Thirty-two steers orally inoculated with a four-strain mixture (1010 CFU) of nalidixic acid-resistant Escherichia coli O157:H7 had sun-dried Ascophyllum nodosum seaweed (Tasco-14™) added to their barley-based diet (860 g/kg barley grain and 90 g/kg whole crop barley silage, dry matter basis) to assess its effectiveness in reducing fecal shedding of the pathogen. Steers were housed in four groups of eight and received Tasco-14™ in the diet, in place of barley, at levels (as fed) of 10 g/kg for 14 days (T1-14), 20 g/kg for 7 days (T2-7), 20 g/kg for 14 days (T2-14), or not at all (i.e., control, CON). The dietary treatments commenced 7 days after E. coli O157:H7 inoculation and fecal shedding patterns were examined over 14 weeks. Water, water–trough interface, feed and fecal pat samples were also collected weekly and cultured for E. coli O157:H7. Detection of the pathogen in fecal samples was less frequent (P<0.05) in T1-14 (99/168) and T2-7 (84/168) versus CON (135/168) and T2-14 (115/168), and the concentrations of E. coli O157:H7 recovered in feces from T1-14 and T2-7 steers were lower (P<0.005) than from CON or T2-14 steers. Rates of decline in shedding of E. coli O157:H7 were similar among treatments, but final numbers of E. coli O157:H7 were lower (P<0.05) in T1-14 and T2-7 as compared to T2-14 and CON. Fecal volatile fatty acid concentrations and pH were similar among treatments, suggesting no fecal alterations that were antagonistic to survival. E. coli O157:H7 was present in 1 (from T2-7) of 56 cattle drinking water samples, 2 of 56 (T1-14, CON) feed samples and 32 of 56 fecal pats. A second experiment investigated effects of the dietary treatment on growth performance of non-inoculated sheep. Tasco-14™ was administered to 40 individually fed Canadian Arcott lambs beginning at day 56 of a 105-day finishing period. The lambs received Tasco-14™ at 0 g/kg (control, CON), at 10 g/kg for 14 days (T1-14), 20 g/kg for 14 days (T2-14), 10 g/kg for 28 days (T1-28) or at 20 g/kg for 7 days (T2-7) as a top-dress on their pelleted, barley grain-based diet (n = 8). E. coli O157:H7 was not isolated from fecal samples collected at 4-week intervals, but generic E. coli populations were lower (P<0.05) in T1-28 lambs than in other treatments. Average daily gain, feed intake, feed efficiency and carcass traits did not differ among treatments. Our challenge study supports past studies showing that Tasco-14™ decreases shedding of E. coli O157:H7 by cattle. The lamb study shows that this additive did not directly affect feed intake or animal growth.  相似文献   

10.
In a longitudinal study in a Finnish cattle finishing unit we investigated excretion and sources of Escherichia coli O157 in bulls from postweaning until slaughter. Three groups of 31 to 42 calves were sampled in a calf transporter before they entered the farm and four to seven times at approximately monthly intervals at the farm. All calves sampled in the livestock transporter were negative for E. coli O157 on arrival, whereas positive animals were detected 1 day later. During the fattening period the E. coli O157 infection rate varied between 0 and 38.5%. The animals were also found to be shedding during the cold months. E. coli O157 was isolated from samples taken from water cups, floors, and feed passages. E. coli O157 was detected in 9.7 to 38.9% of the fecal samples taken at slaughter, while only two rumen samples and one carcass surface sample were found to be positive. E. coli O157 was isolated from barn surface samples more often when the enrichment time was 6 h than when the enrichment time was 24 h (P < 0.0001). Fecal samples taken at the abattoir had lower counts (≤0.4 MPN/g) than fecal samples at the farm (P < 0.05). E. coli O157 was isolated more often from 10-g fecal samples than from 1-g fecal samples (P < 0.0001). Most farm isolates belonged to one pulsed-field gel electrophoresis (PFGE) genotype (79.6%), and the rest belonged to closely related PFGE genotypes. In conclusion, this study indicated that the finishing unit rather than introduction of new cattle was the source of E. coli O157 at the farm and that E. coli O157 seemed to persist well on barn surfaces.  相似文献   

11.
Acyl-homoserine-lactone autoinducer (AHL) produced by nonenterohemorrhagic Escherichia coli species in cattle appears to be required for enterohemorrhagic E. coli (EHEC) colonization of the gastrointestinal tract (GIT). The current research aimed to examine the effect of season, diet, EHEC shedding, and location within the GIT on AHL prevalence in the ruminant. Luminal content samples were collected from the rumen and rectum of feedlot cattle at slaughter in the spring, summer, fall, and winter for culture of E. coli O157:H7 and AHL determination. During the spring collection, samples were additionally collected from the cecum and small intestine, but these samples all were AHL negative and therefore not examined again. To assess the influence of diet on AHL prevalence, 14 lambs were fed either 100% forage or 80% concentrate diets and experimentally inoculated with EHEC. At 8 days after infection, all the lambs were killed, and necropsies were taken, with luminal contents collected from the GIT. The collections from the feedlot cattle had AHL in 100% of the rumen content samples from the spring, summer, and fall, but not in any of the winter samples. No other GIT samples from feedlot cattle were AHL positive, and all the samples from the sheep study were AHL negative. The cattle seemed to show a weak correlation between ruminal AHL and EHEC prevalence. This research found AHL only in the rumen and not in the lower GIT of feedlot cattle. However, it is unclear whether this is because the pH of the lower gut destroys the AHL or because a lack of certain bacteria in the lower gut producing AHL. Mention of trade name, proprietary product, or specific equipment does not constitute a guarantee or warranty by the USDA and does not imply its approval to the exclusion of other products that may be suitable.  相似文献   

12.
The objectives of this study were to identify endemic bacteriophages (phages) in the feedlot environment and determine relationships of these phages to Escherichia coli O157:H7 from cattle shedding high and low numbers of naturally occurring E. coli O157:H7. Angus crossbred steers were purchased from a southern Alberta (Canada) feedlot where cattle excreting ≥104 CFU · g−1 of E. coli O157:H7 in feces at a single time point were identified as supershedders (SS; n = 6), and cattle excreting <104 CFU · g−1 of feces were identified as low shedders (LS; n = 5). Fecal pats or fecal grabs were collected daily from individual cattle for 5 weeks. E. coli O157:H7 in feces was detected by immunomagnetic separation and enumerated by direct plating, and phages were isolated using short- and overnight-enrichment methods. The total prevalence of E. coli O157:H7 isolated from feces was 14.4% and did not differ between LS and SS (P = 0.972). The total prevalence of phages was higher in the LS group (20.9%) than in the SS group (8.3%; P = 0.01). Based on genome size estimated by pulsed-field gel electrophoresis and morphology determined by transmission electron microscopy, T4- and O1-like phages of Myoviridae and T1-like phage of Siphoviridae were isolated. Compared to T1- and O1-like phages, T4-like phages exhibited a broad host range and strong lytic capability when targeting E. coli O157:H7. Moreover, the T4-like phages were more frequently isolated from feces of LS than SS, suggesting that endemic phages may impact the shedding dynamics of E. coli O157:H7 in cattle.  相似文献   

13.

Background  

Escherichia coli serogroup O157:H7 has emerged as an important zoonotic bacterial pathogen, causing a range of symptoms from self-limiting bloody diarrhea to severe hemorrhagic colitis and hemolytic-uremic syndrome in humans. Beef and dairy cattle are considered the most important animal reservoirs for this pathogen. One of the important virulence characteristics of E. coli O157:H7 is the eaeA gene encoding the 97 kDa surface protein intimin. Intimin is required for attachment and effacement during the interaction of enterohemorrhagic E. coli with human and bovine neonatal enterocytes. The present study was undertaken to test the hypothesis that an adaptive mucosal immune response directed against intimin will reduce or prevent enteric colonization and fecal shedding of E. coli O157:H7 in cattle.  相似文献   

14.
The relationship between endemic bacteriophages infecting E. coli O157:H7 (referred to as “phage”) and levels of shedding of E. coli O157:H7 by cattle was investigated in two commercial feedlots in southern Alberta, Canada. Between May and November 2007, 10 pens of cattle were monitored by collection of pooled fecal pats, water with sediment from troughs, manure slurry from the pen floor, and rectal fecal samples from individual animals (20 per pen) at two separate times. Bacteriophages infecting E. coli O157:H7 were detected more frequently (P < 0.001) after 18 to 20 h enrichment than by initial screening and were recovered in 239 of 855 samples (26.5% of 411 pooled fecal pats, 23.8% of 320 fecal grab samples, 21.8% of 87 water trough samples, and 94.6% of 37 pen floor slurry samples). Overall, prevalence of phage was highest (P < 0.001) in slurry. Recovery of phage from pooled fecal pats was highest (P < 0.05) in May. Overall recovery did not differ (P > 0.10) between fecal grab samples and pooled fecal pats. A higher prevalence of phage in fecal pats or water trough samples was associated (P < 0.01) with reduced prevalence of E. coli O157:H7 in rectal fecal samples. There was a weak but significant negative correlation between isolation of phage and E. coli O157:H7 in fecal grab samples (r = −0.11; P < 0.05). These data demonstrate that the prevalence of phage fluctuates in a manner similar to that described for E. coli O157:H7. Phage were more prevalent in manure slurry than other environmental sources. The likelihood of fecal shedding of E. coli O157:H7 was reduced if cattle in the pen harbored phage.Bacteriophages are the most abundant biological entities on earth. An estimated 1030 marine bacteriophages are harbored in the ocean, and they significantly influence microbial communities and function (27). As resistance is an increasing challenge in antimicrobial therapy, the antimicrobial nature of bacteriophages is being more intensively studied (13, 15). Bacteriophages naturally inhabit the mammalian gastrointestinal tract (1, 8), and Escherichia coli-infecting bacteriophages are commonly isolated from sewage, hospital wastewater, and fecal samples from humans and animals (3). Ruminants have been shown to shed up to 107 bacteriophage per gram of feces (6), and in humans multiple types of bacteriophage exhibiting activity against E. coli have been isolated from a single fecal sample (7).E. coli O157:H7 is an important zoonotic bacterium carried asymptomatically by cattle and readily isolated from manure, manure slurry, and drinking water in dairies and feedlots (11, 24, 30). Additionally, E. coli O157:H7 shedding by cattle has a seasonal pattern, peaking in the summer months (2, 25). Bacteriophage strains that infect E. coli O157:H7 have also been isolated from animal feces and have shown lytic activity against this bacterium in vivo and in vitro (5, 23, 28, 31). In recent studies, such phages were shown to be widely distributed in cattle and in feces on the pen floor within feedlots (4, 18). However, the relationships between the presence of E. coli O157:H7-infecting bacteriophage in cattle and their environment and the shedding of this bacterium by cattle are largely undefined. Consequently, the aims of the present study were (i) to determine the prevalence of endemic E. coli O157:H7-infecting bacteriophage (referred to as “phage”) in feedlots over a 7-month period and (ii) to compare the presence of phage to the occurrence of E. coli O157:H7 in cattle and their environment.  相似文献   

15.
AIMS: To determine if thyroid function affects faecal shedding of Escherichia coli O157:H7. METHODS AND RESULTS: Eight yearling cattle (n = 4 per treatment group), previously identified as shedding E. coli O157:H7, received either 0 or 10 mg 6-N-propyl-2-thiouracil (PTU) kg(-1) BW day(-1) for 14 days to reduce serum concentrations of the thyroid hormones, T(3) and T(4). Animals were monitored daily for changes in faecal shedding of E. coli O157:H7 and E. coli (EC) for the 14-day treatment period and an additional 7 days post-treatment. Body weight was measured weekly and serum concentrations of T(3) and T(4) were determined every 3 days. No differences in faecal shedding of E. coli O157:H7 were observed during the 14-day treatment period. However, compared with control animals, a greater percentage of PTU-treated cattle ejected E. coli O157:H7 on day 16 (100 vs 25%) and 18 (75 vs 0%) of the post-treatment period. Serum T(3) was lower in PTU-treated cattle during the 14-day treatment period and greater on day 18 of the post-treatment period. CONCLUSION: Cattle with chemically altered thyroid hormones had similar shedding patterns of faecal E. coli O157:H7 and EC during the 14-day treatment period. However, faecal shedding of E. coli O157:H7 tended to be greater, and serum concentrations of T(3), were greater for PTU-treated cattle immediately following the termination of PTU treatment. SIGNIFICANCE AND IMPACT OF THE STUDY: Short-term chemical inhibition of thyroid hormones had minimal effects on faecal shedding of E. coli O157:H7 in naturally infected cattle. However, a hyperthyroid state as observed postdosing might play a role in the seasonal shedding of E. coli O157:H7 in cattle.  相似文献   

16.
Enterohemorrhagic Escherichia coli O157:H7 is an important intestinal pathogen of humans with a main reservoir of domesticated ruminants, particularly cattle. It is anticipated that the risk of human infection can be reduced by controlling the organism within its reservoir hosts. Several options for the control of E. coli O157:H7 in cattle have been proposed, but none have been demonstrated to be successful in the field. Here we describe a novel experimental method, based on the terminal-rectum-restricted colonization described previously, to eliminate fecal carriage of E. coli O157:H7. In experimentally challenged calves, direct application to the rectal mucosa of either of two therapeutic agents, polymyxin B or chlorhexidine, greatly reduced bacterial shedding levels in the immediate posttreatment period. The most efficacious therapeutic agent, chlorhexidine, was compared in orally and rectally challenged calves. The treatment eliminated high-level shedding and reduced low-level shedding by killing bacteria at the terminal rectum. A rapid-detection system based on the ability to identify E. coli O157:H7 from swabs of the rectal mucosa was also assessed. This test was sufficiently sensitive to identify high-level bacterial carriage. Thus, a combination of the detection method and treatment regimens could be used in the field to eliminate high-level fecal excretion of E. coli O157:H7, so greatly reducing its prevalence within this host and the risk of human infection.  相似文献   

17.
Distillers’ grains (DG), a by-product of ethanol production, are fed to cattle. Associations between Escherichia coli O157 prevalence and feeding of DG were investigated in feedlot cattle (n = 379) given one of three diets: steam-flaked corn (SFC) and 15% corn silage with 0 or 25% dried distillers’ grains (DDG) or SFC with 5% corn silage and 25% DDG. Ten fecal samples were collected from each pen weekly for 12 weeks to isolate E. coli O157. Cattle fed 25% DDG with 5 or 15% silage had a higher (P = 0.01) prevalence of E. coli O157 than cattle fed a diet without DDG. Batch culture ruminal or fecal microbial fermentations were conducted to evaluate the effect of DDG on E. coli O157 growth. The first study utilized microbial inocula from steers fed SFC or dry-rolled corn with 0 or 25% DDG and included their diet as the substrate. Ruminal microbial fermentations from steers fed DDG had higher E. coli O157 contents than ruminal microbial fermentations from steers fed no DDG (P < 0.05) when no substrate was included. Fecal fermentations showed no DDG effect on E. coli O157 growth. In the second study with DDG as a substrate, ruminal fermentations with 0.5 g DDG had higher (P < 0.01) E. coli O157 concentrations at 24 h than ruminal fermentations with 0, 1, or 2 g DDG. In fecal fermentations, 2 g DDG resulted in a higher concentration (P < 0.05) at 24 h than 0, 0.5, or 1 g DDG. The results indicate that there is a positive association between DDG and E. coli O157 in cattle, and the findings should have important ramifications for food safety.  相似文献   

18.

Background  

Enteropathogenic Escherichia coli (EPEC), mainly causing infantile diarrhoea, represents one of at least six different categories of diarrheagenic E. coli with corresponding distinct pathogenic schemes. The mechanism of EPEC pathogenesis is based on the ability to introduce the attaching-and-effacing (A/E) lesions and intimate adherence of bacteria to the intestinal epithelium. The role and the epidemiology of non-traditional enteropathogenic E. coli serogroup strains are not well established. E. coli O157:H45 EPEC strains, however, are described in association with enterocolitis and sporadic diarrhea in human. Moreover, a large outbreak associated with E. coli O157:H45 EPEC was reported in Japan in 1998. During a previous study on the prevalence of E. coli O157 in healthy cattle in Switzerland, E. coli O157:H45 strains originating from 6 fattening cattle and 5 cows were isolated. In this study, phenotypic and genotypic characteristics of these strains are described. Various virulence factors (stx, eae, ehxA, astA, EAF plasmid, bfp) of different categories of pathogenic E. coli were screened by different PCR systems. Moreover, the capability of the strains to adhere to cells was tested on tissue culture cells.  相似文献   

19.
Studies were conducted to evaluate fecal shedding of Escherichia coli O157:H7 in a small group of inoculated deer, determine the prevalence of the bacterium in free-ranging white-tailed deer, and elucidate relationships between E. coli O157:H7 in wild deer and domestic cattle at the same site. Six young, white-tailed deer were orally administered 108 CFU of E. coli O157:H7. Inoculated deer were shedding E. coli O157:H7 by 1 day postinoculation (DPI) and continued to shed decreasing numbers of the bacteria throughout the 26-day trial. Horizontal transmission to an uninoculated deer was demonstrated. Although E. coli O157:H7 bacteria were recovered from the gastrointestinal tracts of deer necropsied from 4 to 26 DPI, attaching and effacing lesions were not apparent in any deer. Results are similar to those of inoculation studies in calves and sheep. In field studies, E. coli O157 was not detected in 310 fresh deer fecal samples collected from the ground. It was detected in feces, but not in meat, from 3 of 469 free-ranging deer in 1997. In 1998, E. coli O157 was not detected in 140 deer at the single positive site found in 1997; however, it was recovered from 13 of 305 dairy and beef cattle at the same location. Isolates of E. coli O157:H7 from deer and cattle at this site differed with respect to pulsed-field gel electrophoresis patterns and genes encoding Shiga toxins. The low overall prevalence of E. coli O157:H7 and the identification of only one site with positive deer suggest that wild deer are not a major reservoir of E. coli O157:H7 in the southeastern United States. However, there may be individual locations where deer sporadically harbor the bacterium, and venison should be handled with the same precautions recommended for beef, pork, and poultry.  相似文献   

20.
Feedlot cattle were observed for fecal excretion of and rectoanal junction (RAJ) colonization with Escherichia coli O157:H7 to identify potential “supershedders.” RAJ colonization and fecal excretion prevalences were correlated, and E. coli O157:H7 prevalences and counts were significantly greater for RAJ samples. Based on a comparison of RAJ and fecal ratios of E. coli O157:H7/E. coli counts, the RAJ appears to be preferentially colonized by the O157:H7 serotype. Five supershedders were identified based on persistent colonization with high concentrations of E. coli O157:H7. Cattle copenned with supershedders had significantly greater mean pen E. coli O157:H7 RAJ and fecal prevalences than noncopenned cattle. Cumulative fecal E. coli O157:H7 excretion was also significantly higher for pens housing a supershedder. E. coli O157:H7/E. coli count ratios were higher for supershedders than for other cattle, indicating greater proportional colonization. Pulsed-field gel electrophoresis analysis demonstrated that isolates from supershedders and copenned cattle were highly related. Cattle that remained negative for E. coli O157:H7 throughout sampling were five times more likely to have been in a pen that did not house a supershedder. The data from this study support an association between levels of fecal excretion of E. coli O157:H7 and RAJ colonization in pens of feedlot cattle and suggest that the presence of supershedders influences group-level excretion parameters. An improved understanding of individual and population transmission dynamics of E. coli O157:H7 can be used to develop preslaughter- and slaughter-level interventions that reduce contamination of the food chain.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号