首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of tyrosine hydroxylase, the enzyme that catalyzes the rate-limiting step in catecholamine biosynthesis, increases in postganglionic sympathetic neurons following electrical stimulation of their afferent preganglionic input. Two types of changes in enzyme activity occur: an acute increase and a delayed and long-lasting increase. The pharmacological mechanisms involved in these transsynaptic effects and the biochemical mechanisms underlying the changes in tyrosine hydroxylase activity are discussed.  相似文献   

2.
The distribution of protein-O-carboxylmethyltransferase and tyrosine hydroxylase immunoreactivity in brain was compared with the use of highly specific polyclonal antibodies prepared against the native form of each enzyme. Protein-O-carboxylmethyltransferase was found in brain areas rich in catecholamine neurons as identified by tyrosine hydroxylase immunoreactivity. Rabbit anti-protein-O-carboxylmethyltransferase labeled cell bodies in the locus coeruleus, substantia nigra, and paraventricular nucleus whereas rabbit anti-tyrosine hydroxylase prepared against highly purified, native tyrosine hydroxylase from cultured PC12 cells labelled cell bodies in the same brain regions. In addition, the antibody to tyrosine hydroxylase made possible the visualization of very fine cortical processes containing tyrosine hydroxylase and very dense neuronal networks throughout the nigrostriatal pathway. The coincidence of protein-O-carboxylmethyltransferase and tyrosine hydroxylase in catecholamine rich brain areas provide an anatomical basis for the possibility that protein-O-carboxylmethyltransferase could modulate catecholaminergic neurotransmission.  相似文献   

3.
Neuronal antigens can be demonstrated histologically by numerous direct and indirect immunocytochemical techniques in which a specific antibody is identified by a marker compound such as fluorescein isothiocyanate, ferritin, or horseradish peroxidase. One of the more sensitive methods for the light and electron microscopic localizations of antigens in sections of tissue is the peroxidase-antiperoxidase (PAP) technique. The experimental procedures and the results obtained using this technique for the localization of the catecholamine synthesizing enzyme, tyrosine hydroxylase, are described. The cellular and ultrastructural localization of the enzyme is demonstrated in perikarya, processes, and terminals of catecholaminergic neurons in rat brain. The immunocytochemical localization of tyrosine hydroxylase is compared to the localization of two peptides, substance P and [Met5]-enkephalin, in the A2 region of the medulla. These studies suggest that a synaptic interaction exists between the catecholaminergic neurons and neurons showing positive immunoreactivity for the peptides. The limitations of the PAP immunocytochemical technique are also discussed in relation to the immunocytochemical localization of tyrosine hydroxylase and other antigens.  相似文献   

4.
Summary

A new mechanism of oxygen radical formation in dopaminergic neurons is proposed, based on the oxidative mechanism of tyrosine hydroxylase. The cofactor (6R,6S)-5,6,7,8-tetrahydrobiopterin can rearrange in solution which allows an autoxidation reaction producing O2.-, H2O2 and HO.. The combination of tyrosine hydroxylase and the cofactor produces more oxygen radicals than does the autoxidation of the cofactor. This production of oxygen radicals could be damaging to dopaminergic neurons. In the presence of tyrosine, the enzyme produces less radicals than it does in the absence of tyrosine. Mechanisms are proposed for the generation of reactive oxygen species during the autoxidation of the cofactor and during enzymatic catalysis. The generation, by tyrosine hydroxylase, of very small amounts of oxygen radicals over the period of 65 years could contribute to the oxidative stress that causes Parkinson's disease.  相似文献   

5.
Summary Immunoreactivity to the rate limiting enzyme of catecholamine synthesis, tyrosine hydroxylase, has been described in the inferior sensory (= nodose) ganglion of the vagal nerve in the rat. The aim of the present study was to characterize further this neuronal population. The neurons do not represent displaced autonomic efferent neurons, since they do not receive synaptic input, as indicated by the absence of synaptophysin-immunoreactive terminals. In addition to the immunoreactivity to tyrosine hydroxylase, a tyrosine hydroxylase cRNA probe hybridizes with nodose ganglion neurons as demonstrated by in situ hybridization and Northern blotting. Many but not all of the tyrosine hydroxylase-immunoreactive neurons are also immunoreactive to the dopamine synthesizing enzyme, aromatic-l-amino-acid-decarboxylase, but lack the noradrenaline-synthesizing enzyme, dopamine--hydroxylase, thus favoring synthesis of dopamine. Neuropeptide Y, which is often colocalized with catecholamines, is also present in a subset of nodose ganglion neurons, as indicated by immunohistochemistry, in situ hybridization and Northern blotting. However, double-labeling immunofluorescence has revealed that these two antigens are localized in different cell populations. Retrograde neuronal tracing utilizing fluorescent dyes (Fast blue, Fluoro-gold) combined with tyrosine hydroxylase immunohistochemistry has demonstrated that the esophagus and stomach are peripheral targets of tyrosine-hydroxylase-containing vagal visceroafferent neurons.  相似文献   

6.
Tryptic peptide fragments of tyrosine hydroxylase isolated from 32PO4-prelabeled bovine adrenal chromaffin cells are resolved into seven phosphopeptides by reverse phase-high performance liquid chromatography. All seven of the peptides are phosphorylated on serine residues. Three of these putative phosphorylation sites, peptides 3, 5, and 6, are rapidly phosphorylated (5-fold in 15 s) by both acetylcholine stimulation and potassium depolarization of the cells, and this phosphorylation is accompanied by a similarly rapid activation of the enzyme. Both phosphorylation and activation are transient and do not account for the prolonged increase in catecholamine biosynthesis produced by these stimuli. Peptides 4 and 7 show a much slower and sustained increase in phosphorylation (3-fold in 4 min) in response to acetylcholine and potassium. Phosphorylation of these peptides correlates with the sustained increase in catecholamine biosynthesis rather than enzyme activation. Peptides 1 and 2 are not stimulated by any agonist yet employed and thus show no relation to enzyme activation or catecholamine biosynthesis. Phosphorylation of all five peptides by acetylcholine or potassium is calcium-dependent. In contrast to the stimulation of phosphorylation of tyrosine hydroxylase on multiple sites, forskolin stimulates the phosphorylation of only peptide 6, and this is accompanied by a coordinated activation of tyrosine hydroxylase and increased catecholamine biosynthesis. These findings show that the phosphorylation of tyrosine hydroxylase in intact cells is more complex than predicted from in vitro results, that at least two protein kinases are involved in the secretagogue-induced phosphorylation of tyrosine hydroxylase, and that the regulation of catecholamine biosynthesis, in response to phosphorylation, appears to involve both tyrosine hydroxylase activation and other mechanisms.  相似文献   

7.
8.
Recently, we characterized leptin receptors in bovine adrenal medullary cells (Yanagihara et al. 2000). Here we report the stimulatory effect of leptin on catecholamine synthesis in the cells. Incubating cells with leptin (10 nM) for 20 min increased the synthesis of 14C-catecholamines from [14C]tyrosine, but not from L-3,4-dihydroxyphenyl [3-14C]alanine. The stimulation of catecholamine synthesis in the cells by leptin was associated with the phosphorylation and activation of tyrosine hydroxylase, the rate-limiting enzyme of catecholamine biosynthesis. The incubation of cells with leptin resulted in a rapid activation of the mitogen-activated protein kinases (MAPKs). An inhibitor of MAPK kinase, U0126, nullified the stimulatory effect of leptin on the synthesis of 14C-catecholamines. Leptin potentiated the stimulatory effect of acetylcholine on 14C-catecholamine synthesis, whereas leptin failed to enhance the phosphorylation and activation of tyrosine hydroxylase induced by acetylcholine. These findings suggest that leptin stimulates catecholamine synthesis via the activation of tyrosine hydroxylase by two different mechanisms, i.e., one is dependent on tyrosine hydroxylase phosphorylation mediated through the MAPK pathway and the second is independent of enzyme phosphorylation.  相似文献   

9.
Biopterin, the cofactor for tyrosine hydroxylase and tryptophan hydroxylase, was decreased in caudate nucleus, hypothalamus and cerebellum of the rolling mouse. Though there were not significant differences of tyrosine hydroxylase and tryptophan hydroxylase activities between the rolling and normal control mouse in the hypothalamus, the rolling showed significant increase of biopterin concentration and tyrosine hydroxylase activity after administration of thyrotropin releasing hormone (TRH). These results suggest that ataxic gait of the rolling mouse may be partly due to some abnormalities of catecholaminergic neurons, especially noradrenergic neurons, and that TRH may improve the abnormalities of catecholaminergic neurons. The changes of biopterin concentration by TRH administration indicate that biopterin may be a regulatory factor in catecholamine biosynthesis.  相似文献   

10.
Salsolinol is one of the dopamine-derived tetrahydroisoquinolines and is synthesized from pyruvate or acetaldehyde and dopamine. As it cannot cross the blood-brain barrier, salsolinol as the R enantiomer in the brain is considered to be synthesized in situ in dopaminergic neurons. Effects of R and S enantiomers of salsolinol on kinetic properties of tyrosine hydroxylase [tyrosine, tetrahydrobiopterin:oxygen oxidoreductase (3-hydroxylating); EC 1.14.16.2], the rate-limiting enzyme of catecholamine biosynthesis, were examined. The naturally occurring cofactor of tyrosine hydroxylase, L-erythro-5,6,7,8-tetrahydrobiopterin, was found to induce allostery to the enzyme polymers and to change the affinity to the biopterin itself. Using L-erythro-5,6,7,8-tetrahydrobiopterin, tyrosine hydroxylase recognized the stereochemical structures of the salsolinols differently. The asymmetric center of salsolinol at C-1 played an important role in changing the affinity to L-tyrosine. The allostery of tyrosine hydroxylase toward biopterin cofactors disappeared, and at low concentrations of biopterin such as in brain tissue, the affinity to the cofactor changed markedly. A new type of inhibition of tyrosine hydroxylase, by depleting the allosteric effect of the endogenous biopterin, was found. It is suggested that under physiological conditions, such a conformational change may alter the regulation of DOPA biosynthesis in the brain.  相似文献   

11.
Acetylcholine, released from splanchnic nerve terminals innervating adrenal chromaffin cells, is known to increase synthesis of adrenal tyrosine hydroxylase, the rate-limiting enzyme in catecholamine synthesis. The neuropeptide substance P is also present in the splanchnic nerve innervating the adrenal medulla, and this study examined whether substance P has any long-term effects on tyrosine hydroxylase activity and catecholamine levels in cultures of adult bovine adrenal chromaffin cells. When cultures were incubated for 3 days with substance P and carbachol, a cholinergic agonist, substance P (10(-6) M, and greater) completely inhibited the increase in tyrosine hydroxylase activity normally induced by carbachol. Long-term stimulation with carbachol also depleted endogenous catecholamines from the cells and substance P prevented this carbachol-induced depletion of catecholamine content. Substance P by itself, in the absence of carbachol, had only a slight effect on tyrosine hydroxylase activity. 8-Bromoadenosine 3':5'-cyclic monophosphate, an analogue of adenosine 3':5'-cyclic monophosphate, also increases tyrosine hydroxylase activity in chromaffin cells; however, substance P had no effect on the increase in tyrosine hydroxylase activity induced by this analogue. These results indicate that substance P's effects are relatively specific for the carbachol-induced increased in tyrosine hydroxylase activity and that the primary site of action of substance P is not a site common to the mechanism of tyrosine hydroxylase induction by carbachol and 8-bromoadenosine 3':5'-cyclic monophosphate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
Sympathetic innervation of the stomach was studied in rats by the method of retrograde axon transport of Fast Blue in postnatal ontogenesis. The number of labeled neurons increased in the first 10 days of life and then did not change until the senescence. All labeled neurons innervating the stomach contain the catecholamine synthesis enzyme, tyrosine hydroxylase. The proportion of labeled neuropeptide Y-immunopositive neurons did not change in the development, the percentage of labeled calbindin-immunoreactive neurons decreased in the first month of life.  相似文献   

13.
We have investigated the effects of substrate-bound laminin on levels of enzymes of the catecholamine biosynthetic pathway in primary cultures of calf adrenal chromaffin cells. Laminin increases the levels of the enzymes tyrosine hydroxylase, dopamine-beta-hydroxylase, and phenylethanolamine-N-methyl-transferase. This effect is selective, in that levels of other enzymes (lactate dehydrogenase, aromatic amino acid decarboxylase, and acetylcholinesterase) are not increased. The effect of laminin can be blocked by antibodies directed against a fragment of the heparin-binding domain of the molecule, whereas antibodies directed against other fragments do not block the increase in tyrosine hydroxylase. Thus the laminin domain involved in enzyme regulation in chromaffin cells is apparently the same as that previously implicated in laminin's interactions with neurons to potentiate survival and stimulate neurite outgrowth (Edgar, D., R. Timpl, and H. Thoenen, 1984, EMBO (Eur. Mol. Biol. Organ.) J., 3:1463-1468). The increase in chromaffin cell tyrosine hydroxylase levels is preceded by an activation of the enzyme in which the Vmax (but not the Km) is altered. The effects of laminin appear to be developmentally regulated, since neither activation nor increased levels of tyrosine hydroxylase occur in adult adrenal chromaffin cells exposed to laminin.  相似文献   

14.
N-methyl-norsalsolinol and related tetrahydroisoquinolines accumulate in the nigrostriatal system of the human brain and are increased in the cerebrospinal fluid of patients with Parkinson's disease. We show here that 6,7-dihydroxylated tetrahydroisoquinolines such as N-methyl-norsalsolinol inhibit tyrosine hydroxylase, the key enzyme in dopamine synthesis, by imitating the mechanisms of catecholamine feedback regulation. Docked into a model of the enzyme's active site, 6,7-dihydroxylated tetrahydroisoquinolines were ligated directly to the iron in the catalytic center, occupying the same position as the catecholamine inhibitor dopamine. In this position, the ligands competed with the essential tetrahydropterin cofactor for access to the active site. Electron paramagnetic resonance spectroscopy revealed that, like dopamine, 6,7-dihydroxylated tetrahydroisoquinolines rapidly convert the catalytic iron to a ferric (inactive) state. Catecholamine binding increases the thermal stability of tyrosine hydroxylase and improves its resistance to proteolysis. We observed a similar effect after incubation with N-methyl-norsalsolinol or norsalsolinol. Following an initial rapid decline in tyrosine hydroxylation, the residual activity remained stable for 5 h at 37 degrees C. Phosphorylation by protein kinase A facilitates the release of bound catecholamines and is the most prominent mechanism of tyrosine hydroxylase reactivation. Protein kinase A also fully restored enzyme activity after incubation with N-methyl-norsalsolinol, demonstrating that tyrosine hydroxylase inhibition by 6,7-dihydroxylated tetrahydroisoquinolines mimics all essential aspects of catecholamine end-product regulation. Increased levels of N-methyl-norsalsolinol and related tetrahydroisoquinolines are therefore likely to accelerate dopamine depletion in Parkinson's disease.  相似文献   

15.
Tyrosine hydroxylase activity correlated significantly with norepinephrine concentration and turnover, when results from regions containing predominantly noradrenergic terminals were compared, and with dopamine concentration and turnover when results from regions containing predominantly dopaminergic terminals were compared. Regions containing dopamine or norepinephrine cell bodies were characterized by higher tyrosine hydroxylase activities as compared to regions containing mostly nerve terminals. Higher levels of tyrosine hydroxylase activity and transmitter turnover were observed in regions containing dopaminergic terminals than in regions containing norepinephrine terminals. These findings are consistent with the view that tyrosine hydroxylase activity is linked to rates of catecholamine utilization by neurons in the CNS.  相似文献   

16.
Tyrosine hydroxylase phosphorylation: regulation and consequences   总被引:7,自引:0,他引:7  
The rate-limiting enzyme in catecholamine synthesis is tyrosine hydroxylase. It is phosphorylated at serine (Ser) residues Ser8, Ser19, Ser31 and Ser40 in vitro, in situ and in vivo. A range of protein kinases and protein phosphatases are able to phosphorylate or dephosphorylate these sites in vitro. Some of these enzymes are able to regulate tyrosine hydroxylase phosphorylation in situ and in vivo but the identity of the kinases and phosphatases is incomplete, especially for physiologically relevant stimuli. The stoichiometry of tyrosine hydroxylase phosphorylation in situ and in vivo is low. The phosphorylation of tyrosine hydroxylase at Ser40 increases the enzyme's activity in vitro, in situ and in vivo. Phosphorylation at Ser31 also increases the activity but to a much lesser extent than for Ser40 phosphorylation. The phosphorylation of tyrosine hydroxylase at Ser19 or Ser8 has no direct effect on tyrosine hydroxylase activity. Hierarchical phosphorylation of tyrosine hydroxylase occurs both in vitro and in situ, whereby the phosphorylation at Ser19 increases the rate of Ser40 phosphorylation leading to an increase in enzyme activity. Hierarchical phosphorylation depends on the state of the substrate providing a novel form of control of tyrosine hydroxylase activation.  相似文献   

17.
We have identified a 56-kilodalton protein in cultured bovine adrenal chromaffin cells that is phosphorylated when catecholamine secretion is stimulated. Immunodetection on Western blots from both one- and two-dimensional polyacrylamide gels indicated that this protein was tyrosine hydroxylase, the rate-limiting enzyme in catecholamine biosynthesis. Two-dimensional polyacrylamide gel electrophoresis of proteins from unstimulated cells revealed small amounts of phosphorylated protein with a molecular weight of 56K and pI values of 6.37 and 6.27 which were subunits of tyrosine hydroxylase. Nicotinic stimulation of chromaffin cells caused the phosphorylation of three proteins of 56 kilodaltons with pI values of approximately 6.37, 6.27, and 6.15 which were tyrosine hydroxylase. The immunochemical analysis also revealed that there was unphosphorylated tyrosine hydroxylase 56 kilodaltons with a pI of 6.5 which may have decreased on nicotinic stimulation. The phosphorylation of tyrosine hydroxylase was associated with an increase in in situ conversion of [3H]tyrosine to [3H]dihydroxyphenylalanine ([3H]DOPA). Muscarinic stimulation also caused phosphorylation of tyrosine hydroxylase, but to a smaller extent than did nicotinic stimulation. The secretagogues, elevated K+ and Ba2+, stimulated phosphorylation of tyrosine hydroxylase and [3H]DOPA production. The effects of nicotinic stimulation and elevated K+ on tyrosine hydroxylase phosphorylation and [3H]DOPA production were Ca2+-dependent. Nicotinic agonists also raised cyclic AMP levels in chromaffin cells after 2 min. Dibutyryl cyclic AMP and forskolin, which have little effect on catecholamine secretion, also caused phosphorylation of tyrosine hydroxylase. These stimulators of cyclic AMP-dependent processes caused the appearance of two phosphorylated subunits of tyrosine hydroxylase with pI values of 6.37 and 6.27. There was also a small amount of phosphorylated subunit with a pI of 6.15. Both agents stimulated [3H]DOPA production. The experiments indicate that tyrosine hydroxylase is phosphorylated and activated when chromaffin cells are stimulated to secrete. The data suggest that the earliest phosphorylation of tyrosine hydroxylase induced by a nicotinic agonist occurs through stimulation of a Ca2+-dependent protein kinase. After 2 min phosphorylation by a cyclic AMP-dependent protein kinase may also occur. Phosphorylation of tyrosine hydroxylase is associated with an increase in in situ tyrosine hydroxylase activity.  相似文献   

18.
Chronic depolarization increases norepinephrine (NE) uptake and expression of the norepinephrine transporter (NET) in sympathetic neurons, but the mechanisms are unknown. Depolarization of sympathetic neurons stimulates catecholamine synthesis, and several studies suggest that NET can be regulated by catecholamines. It is not clear if the depolarization-induced increase in NET is because of nerve activity per se, or is secondary to elevated catecholamines. To determine if induction of NET mRNA was a result of increased catecholamines, we used pharmacological manipulations to (i) inhibit tyrosine hydroxylase activity in neurons depolarized with 30 mm KCl, thereby preventing increased catecholamines, or (ii) stimulate tyrosine hydroxylase activity in the absence of depolarization. Inhibiting the depolarization-induced increase in catecholamines prevented the up-regulation of NET mRNA, but did not block the increase in tyrosine hydroxylase (TH) mRNA. Furthermore, stimulating catecholamine production in the absence of depolarization elevated NE uptake, NET protein, and NET mRNA in sympathetic neurons. Similarly, elevating endogenous catecholamines in SK-N-BE2M17 neuroblastoma cells increased NE uptake and NET expression. These data suggest that chronic depolarization of sympathetic neurons induces NET expression through increasing catecholamines, and that M17 neuroblastoma cells provide a model system in which to investigate catechol regulation of NET expression.  相似文献   

19.
Catecholamine release and uptake in the mouse prefrontal cortex   总被引:7,自引:0,他引:7  
Monitoring the release and uptake of catecholamines from terminals in weakly innervated brain regions is an important step in understanding their importance in normal brain function. To that end, we have labeled brain slices from transgenic mice that synthesize placental alkaline phosphatase (PLAP) on neurons containing tyrosine hydroxylase with antibody-fluorochrome conjugate, PLAP-Cy5. Excitation of the fluorochrome enables catecholamine neurons to be visualized in living tissue. Immunohistochemical fluorescence with antibodies to tyrosine hydroxylase and dopamine beta-hydroxylase revealed that the PLAP labeling was specific to catecholamine neurons. In the prefrontal cortex (PFC), immunohistochemical fluorescence of the PLAP along with staining for dopamine transporter (DAT) and norepinephrine transporter (NET) revealed that all three exhibit remarkable spatial overlap. Fluorescence from the PLAP antibody was used to position carbon-fiber microelectrodes adjacent to catecholamine neurons in the PFC. Following incubation with L-DOPA, catecholamine release and subsequent uptake was measured and the effect of uptake inhibitors examined. Release and uptake in NET and DAT knockout mice were also monitored. Uptake rates in the cingulate and prelimbic cortex are so slow that catecholamines can exist in the extracellular fluid for sufficient time to travel approximately 100 microm. The results support heterologous uptake of catecholamines and volume transmission in the PFC of mice.  相似文献   

20.
Although the cerebrospinal fluid-contacting neurons of the avian paraventricular organ exhibit considerable amounts of catecholamines, they show no tyrosine hydroxylase immunoreactivity. In the quail embryo, the development of these neurons has been studied using the paraformaldeyde-glutaraldeyde method for the fluorescence-histochemical localization of catecholamines. The timing of the appearance of catecholamine fluorescence in cerebrospinal fluid-contacting neurons and that in catecholamine-containing neurons of the brainstem have been compared. The first neurons displaying catecholamine fluorescence are found within the locus coeruleus and the nucleus subcoeruleus ventralis on the 5.5th day of incubation. Catecholaminergic neuronal groups of the medulla and mesencephalon can be identified by embryonic day 7, and fluorescent cerebrospinal fluid-contacting neurons of the hypothalamic paraventricular organ can be first recognized at the 8th day of incubation. If the catecholamine content of cerebrospinal fluid-contacting neurons that lack tyrosine hydroxylase depends upon an uptake mechanism, it may be significant that, in fluorescence-histochemical preparations, these neurons can be identified 1–3 days later than those in which catecholamines are synthesized and from which catecholamines are released at an earlier developmental stage. Moreover, cerebrospinal fluid-contacting neurons that have previously been shown to be tyrosine-hydroxylase immunoreactive, and that lie at the spinal-medullary junction display a different developmental pattern. By fluorescence histochemistry, they can be detected only by embryonic day 10.5. The chemical, developmental and topographical differences suggest that the catecholamine-containing cerebrospinal fluid-contacting elements of the paraventricular organ and those of the spinal cord represent two different subsets of cerebrospinal fluid-contacting neurons whose respective functional roles remain to be investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号