共查询到20条相似文献,搜索用时 15 毫秒
1.
L D Claxton K L Dearfield R J Spanggord E S Riccio K Mortelmans 《Mutation research》1987,176(2):185-198
The Salmonella/microsome assay with strains TA97, TA98, TA100 and TA102 was used to examine the potential mutagenicity and structure-activity of 16 mono- and di-halogenated pyridines. The chemical reactivity of the halopyridines suggests that nucleophilic displacement of halogens can occur with halogens at positions 2, 4 and 6 being displaced in addition-elimination reactions. 2-Chloropyridine gave a positive result with rat-liver metabolic activation, and 2-fluoropyridine gave equivocal results under these conditions. Mutagenic responses were also obtained with 2-chloromethyl pyridine and 3-chloromethyl pyridine, in both the presence and absence of rat-liver S9. These results suggest that the halogenated pyridines, especially with halogens at the 2-position, and singly on a methyl substituent, have mutagenic activity in the Salmonella assay. 相似文献
2.
3.
The Salmonella/mammalian microsome mutagenicity test: comparison of human and rat livers as activating systems 总被引:1,自引:0,他引:1
The mutagenicity of several test compounds was verified by the Salmonella/microsome mutagenicity test (Ames test), using both human liver and rat liver (untreated or pretreated with Aroclor 1254) S9 under identical experimental conditions. Aflatoxin B1, 3-methylcholanthrene, and cigarette-smoke condensate were less mutagenic in the presence of human-liver S9 than in the presence of rat-liver S9 (particularly after treatment with Aroclor 1254). The opposite was observed with 2-aminonanthracene and to a lesser degree with 2-aminofluorene; correlation studies indicate that the two compounds were activated by the same or by very similar enzymes, probably cytochrome P-450s. These results clearly indicate that human-liver S9, as an activating system, behaves differently than rat-liver S9; therefore, it may constitute a useful, additional tool for the study of mutagenicity and probably, carcinogenicity in man. 相似文献
4.
Since its development by Dr. Bruce Ames and his coworkers, the Salmonella typhimurium/mammalian microsome mutagenicity assay has been used widely throughout the world. Many authors have suggested various modifications and made recommendations in regards to this assay. Although the recommendations of a panel of experts was published in 1979 by de Serres and Shelby, a committee of members of the Environmental Mutagen Society (EMS) initiated this effort in response to the encouragement by the American Society of Testing and Materials (Committee E47.09.01) and because of new developments within the field of microbial mutagenesis testing. Its purpose is to provide a guide for people who perform or evaluate microbial mutagenesis tests, but it is not intended for these recommendations to replace or diminish the usefulness of presently available protocols and procedures. 相似文献
5.
Mutagenicity of chloro-olefins in the Salmonella/mammalian microsome test. I. Allyl chloride mutagenicity re-examined 总被引:1,自引:0,他引:1
Contrary to findings published up to now, allyl chloride, a well known directly acting mutagen for Salmonella typhimurium, is efficiently activated by rat-liver homogenate (S9 mix) under non-standard mutagenicity testing conditions. Its indirect, S9-mediated mutagenic activity is greatly enhanced when longer than standard preincubation times are applied. The indirect mutagenicity of allyl chloride, thus revealed, greatly exceeds its direct mutagenic activity. Obviously, standard mutagenicity testing conditions cannot be regarded as reliable tools for the evaluation of the full genotoxic potential of allyl chloride and, possibly, of other related compounds. 相似文献
6.
1,3-Pentadiene, a food contaminant produced by some molds when they metabolize sorbic acid, was tested for mutagenicity, using variations of the Salmonella/mammalian microsome assay. The chemical was incorporated into the test system (with and without S9 mix) by 3 methods: (a) the standard plate incorporation assay, (b) a liquid preincubation procedure and (c) exposure of test bacteria in the soft agar overlay to gaseous 1,3-pentadiene. The chemical was extremely toxic to the test bacteria with amounts as low as 2.0 microgram/plate causing cell death. However, none of the nonlethal concentrations tested by any of the methods was mutagenic to Salmonella typhimurium strains TA97, TA98, TA100, TA1535, TA1537 or TA1538. 相似文献
7.
8.
The Ames Salmonella/microsome mutagenicity assay 总被引:11,自引:0,他引:11
The Ames Salmonella/microsome mutagenicity assay (Salmonella test; Ames test) is a short-term bacterial reverse mutation assay specifically designed to detect a wide range of chemical substances that can produce genetic damage that leads to gene mutations. The test employs several histidine dependent Salmonella strains each carrying different mutations in various genes in the histidine operon. These mutations act as hot spots for mutagens that cause DNA damage via different mechanisms. When the Salmonella tester strains are grown on a minimal media agar plate containing a trace of histidine, only those bacteria that revert to histidine independence (his(+)) are able to form colonies. The number of spontaneously induced revertant colonies per plate is relatively constant. However, when a mutagen is added to the plate, the number of revertant colonies per plate is increased, usually in a dose-related manner. The Ames test is used world-wide as an initial screen to determine the mutagenic potential of new chemicals and drugs. The test is also used for submission of data to regulatory agencies for registration or acceptance of many chemicals, including drugs and biocides. International guidelines have been developed for use by corporations and testing laboratories to ensure uniformity of testing procedures. This review provides historical aspects of how the Ames was developed and detailed procedures for performing the test, including the design and interpretation of results. 相似文献
9.
10.
11.
12.
The in vitro assay system used to study the reversion of L5178Y-Ala32 cells from an alanine requiring state to a non-requiring state has been modified in order to be of use in selected in vivo systems. Gamma-ray induced mutations were compared between cells cultured in vitro and those grown in vivo in the intraperitoneal cavity of mice. The expression time was chosen to be 2 days for cells grown in vitro and 5 days for those grown in vivo. The dose response curve can be described as cumulative for cells grown in vitro and linear for those grown in vivo. A dose-rate effect was observed in both systems. The cells grown in vivo were less sensitive to γ-ray with respect to both mutation rate per rad and cell killing as compared to cells grown in vitro. The delayed expression and reduced sensitivity of cells in vivo with respect to induced mutation may be due to factors such as hypoxia and/or reduced availability of essential nutrients. Sensitization in vitro by BUdR was detectable at a concentration as low as 10?6 M, using an exposure time of 15 h. Under these conditions, BUdR alone did not induce any observable mutations. 相似文献
13.
SYBR Green I nucleic acid gel stain is an unsymmetrical cyanine dye developed for sensitive detection of nucleic acids in electrophoretic gels. Its mechanism of nucleic acid binding is not known, whereas the most commonly used nucleic acid gel stain, ethidium bromide, is a well-characterized intercalator. We compared the mutagenicity of SYBR Green I stain with that of ethidium bromide in Salmonella/mammalian microsome reverse mutation assays (Ames tests). As expected [J. McCann, E. Choi, E. Yamasaki, B.N. Ames, Proc. Natl. Acad. Sci. USA, 72 (1975) 5135-5139], ethidium bromide showed high revertant frequencies in several frameshift indicator strains (averaging 68-fold higher than vehicle controls in TA98, 80-fold higher in TA1538, 15-fold higher in TA1537, and 4.4-fold higher in TA97a), only in the presence of rat liver extracts (S9). Small increases in revertant frequencies were observed for ethidium bromide in the base-substitution indicator strain TA102 both in the presence and absence of S9 (averaging 2.0- and 1.8-fold higher than vehicle controls, respectively) and in base-substitution indicator strain TA100 in the presence of S9 (averaging 1.6-fold higher than vehicle controls). A small mutagenic effect was detected for SYBR Green I stain in frameshift indicator strain TA98 (averaging 2. 2-fold higher than vehicle controls) only in the absence of S9 and in base-substitution indicator strain TA102, both in the presence and absence of S9 (averaging 2.2- and 2.7-fold higher than vehicle controls, respectively). Thus, SYBR Green I stain is a weak mutagen and appears to be much less mutagenic than ethidium bromide. These results suggest that SYBR Green I stain may not intercalate, and if it does, that its presence does not give rise to point mutations at a high frequency. 相似文献
14.
15.
Robert S.U. Baker Antonio M. Bonin Ieva Stupans Gerald M. Holder 《Mutation research》1980,71(1):43-52
A highly significant enhancement of mutagenicity occurs with 11 polycyclic aromatic hydrocarbons when 3-methylcholanthrene-induced guinea pig liver S9 is substituted for Aroclor-induced rat liver S9 in the Ames test. The use of MC-induced guinea pig liver S9 is particularly valuable for detecting the weak mutagenicity of benz[c]acridine, which is barely positive in a standard Ames assay. However, anthracene and phenanthrene, which are generally considered not to be carcinogens, remain non-mutagenic for strain TA100. This enhancement of mutagenicity does not correlate with arylhydrocarbon hydroxylase activities of the various liver preparations and does not apply to certain other non-PAH mutagens, including β-naphthylamine, aflatoxin B1 and 4-dimethylaminoazobenzene. 相似文献
16.
Factors were studied which modify the enzymatic capacity of mouse liver microsomal mixed-function oxidase to convert vinylidene chloride (1.1-dichloroethylene) (VDC) into mutagens in the Salmonella/microsome mutagenicity test. A microsomal fraction incorporated in soft agar layer converted VDC into mutagens during 7 h at a constant rate; these were detected with S. typhimurium TA100. In absence of VDC the enzymatic activity declined gradually to nil after 14 h of incubation at 37 degrees C. The presence of EDTA greatly enhanced the microsome-mediated mutagenicity of VDC and led to prolonged enzymatic viability, but only when liver fractions from phenobarbitone (PB) pretreated mice were used. The efficiency of the plate incorporation assay for the detection of mutagens is discussed in comparison with assays in liquid suspension. 相似文献
17.
18.
Mutagenicity of a commercially available N-nitrosodiethanolamine (NDELA) and purified NDELA was examined, using Salmonella typhimurium TA100 as a tester strain. Purified NDELA was positive in the presence of liver activation system from either rats or hamsters, but the mutagenicity was completely lost when dimethyl sulfoxide (DMSO) was used as a solvent. In contrast, the commercial NDELA which was chemically of 93.8% purity showed positive mutagenicity without metabolic activation, and the liver activation system and DMSO had no effect on the direct mutagenic activity. These results indicate that an apparent discrepancy among previous findings of several investigators with the mutagenic response of NDELA might be due to an impurity in NDELA samples and the solvent, DMSO. 相似文献
19.
20.
8 phytoestrogens were tested for mutagenicity using a variation of the Salmonella/mammalian microsome (or Ames) assay. Zearalenone is a mycotoxin produced by a grain contaminant, Fusarium graminearum (Gibberella zeae) and the isomers of zearalanol are reduced derivatives of this compound. The remaining compounds are all flavonoids which occur naturally at relatively high concentrations in many plants, particularly legumes. 4 of these flavonoids (daidzein, genistein, formononetin and biochanin-a) are isoflavones and the 5th, coumestrol, is a coumestan. Each compound was tested at several concentrations ranging from 1--500 micrograms per plate. The microsomal fracton was obtained from Aroclor 1254 (a PCB)-induced rat livers. None of the compounds tested was mutagenic to Salmonella strains TA1538, TA98 or TA100 at any concentration. 相似文献