首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Light-dependent Ca2+ efflux via the Ca2+/H+ antiport in the photosynthetic purple sulfur bacterium Chromatium vinosum was inhibited by three phenothiazines: chlorpromazine; trifluoperazine and phenothiazine. The inhibitors had no effect on Ca2+ uptake by C. vinosum in the dark nor any effect on the light-dependent efflux of either Na+ or Tl+ catalyzed, respectively, by the C. vinosum Na+/H+ or K+/H+ antiports. Ruthenium red and LaCl3, neither of which inhibited light-dependent Ca2+ efflux in C. vinosum, markedly inhibited Ca2+ uptake in the dark by C. vinosum cells. Ruthenium red had no effect on the uptake of either Na+or the K+ analog T1+ by C. vinosum cells in the dark. These results have been interpreted in terms of two separate Ca2+ transport systems in C. vinosum: (i) a phenothiazine-sensitive and ruthenium red, La3+-insensitive Ca2+/H+ antiport responsible for Ca2+ efflux in the light; and (ii) a ruthenium red and La3+-sensitive but phenothiazine-insensitive Ca2+ uptake system.  相似文献   

2.
High density lipoprotein (HDL) stimulates excretion of excess intracellular cholesterol from cells, presumably by interacting with a cell-surface receptor. A 110 kDa membrane protein that is a candidate for the HDL receptor has been identified by ligand blot analysis. In this study we determined the cellular localization of this and other HDL-binding proteins and characterized their properties. The plasma membranes (PM) of cultured bovine aortic endothelial cells were labeled with trace amounts of [3H]cholesterol, and cell homogenates were fractionated on sucrose and Percoll gradients. Ligand blot analysis of homogenates of cultured bovine aortic endothelial cells demonstrated that cells contain multiple proteins that bind HDL3, including a major membrane protein with an apparent M(r) of 110 kDa and two minor ones with M(r) of 105 and 130 kDa. The gradient distribution of the 105, 110, and 130 kDa HDL-binding proteins mirrored that of labeled cholesterol and 5'-nucleotidase, both PM markers. Treatment of intact cells with the water-soluble cross-linker bis(sulfosuccinimidyl)suberate abolished the HDL binding activity of the 110 and 130 kDa proteins but not that of the 105 kDa protein. These findings suggest that the 105, 110, and 130 kDa HDL-binding proteins are localized to the PM and that at least two of these proteins are exposed to the extracellular fluid. Solubilized 110 and 130 kDa proteins were retained on wheat-germ agglutinin and abrin lectin columns, showing that they are glycoproteins. The cellular localization and physical properties of the 110 and 130 kDa proteins suggest that they may play a role in binding of HDL to the cell surface.  相似文献   

3.
We have characterized the serum lipoprotein profile and localized the serum paraoxonase activity of pacu, Piaractus mesopotamicus, a tropical fish species. The total lipoprotein profile of pacu serum obtained after KBr density ultracentrifugation shows the predominance of HDL (1.1267 g/mL). SDS-PAGE electrophoresis revealed a negligible amount of LDL. Pacu HDL was purified by gel filtration column on HPLC, and its molecular mass was estimated to be 246 kDa. Protein composition was 35%, and comprised four protein components with molecular masses of 45, 38, 25 and 12.5 kDa. Lipids represent 58% of total HDL, comprising 40% neutral lipids and 18% phospholipids by weight. The HDL contains 7% of carbohydrates, and mannose was the only sugar detected by paper chromatography in HDL hydrolysates. HDL-containing fractions showed the major paraoxonase activity. Purification of HDL resulted in a 23-fold enrichment of this activity. This is the first experimental evidence demonstrating the association of paraoxonase activity with a HDL in fish.  相似文献   

4.
Paraoxonase 1 (PON1) is an HDL-associated enzyme and exhibits anti-inflammatory, anti-diabetic, and anti-atherogenic properties. Association of PON1 to HDL particles increases the stability and activity of PON1 and is important for the normal functioning of the enzyme. HDL particles are made up of lipid and protein constituents and apolipoprotein A-I (apoA-I) is a principal protein constituent of HDL that facilitates various biological activities of HDL. In many disease conditions the oxidized phospholipid (Ox-PL) content of HDL is found to be increased and an inverse correlation between the activity of PON1 and oxidation of the HDL is observed. However, the molecular details of the inhibitory action of the Ox-PL-containing HDL on the function of PON1 are not clear yet. In this study we have assembled reconstituted HDL (rHDL) particles with and without Ox-PL and compared their effect on the structure and function of 13C-labeled recombinant PON1 (13C-rPON1) by employing attenuated total reflectance Fourier transformed infrared (ATR-FTIR) spectroscopy and enzymatic assay. Our results show that the presence of the Ox-PL in the rHDL particles alters the structure of rPON1 and decreases its lactonase activity.  相似文献   

5.
The paraoxonase gene family contains at least three members: PON1, PON2, and PON3. The physiological roles of the corresponding gene products are still uncertain. Until recently, only the serum paraoxonase/arylesterase (PON1) had been purified and characterized. Here we report the purification, cloning, and characterization of rabbit serum PON3. PON3 is a 40-kDa protein associated with the high density lipoprotein fraction of serum. In contrast to PON1, PON3 has very limited arylesterase and no paraoxonase activities but rapidly hydrolyzes lactones such as statin prodrugs (e.g. lovastatin). These differences facilitated the complete separation of PON3 from PON1 during purification. PON3 hydrolyzes aromatic lactones and 5- or 6-member ring lactones with aliphatic substituents but not simple lactones or those with polar substituents. We cloned PON3 from total rabbit liver RNA and expressed it in mammalian 293T/17 cells. The recombinant PON3 has the same apparent molecular mass and substrate specificity as the enzyme purified from serum. Rabbit serum PON3 is more efficient than rabbit PON1 in protecting low density lipoprotein from copper-induced oxidation. This is the first report that identifies a second PON enzyme in mammalian serum and the first to describe an enzymatic activity for PON3.  相似文献   

6.
After receptor-mediated endocytosis of triglyceride-rich lipoproteins (TRL) into the liver, TRL particles are immediately disintegrated in peripheral endosomal compartments. Whereas core lipids and apoprotein B are delivered for degradation into lysosomes, TRL-derived apoE is efficiently recycled back to the plasma membrane. This is followed by apoE re-secretion and association of apoE with high density lipoproteins (HDL). Because HDL and apoE can independently promote cholesterol efflux, we investigated whether recycling of TRL-derived apoE in human hepatoma cells and fibroblasts could be linked to intracellular cholesterol transport. In this study we demonstrate that HDL(3) does not only act as an extracellular acceptor for recycled apoE but also stimulates the recycling of internalized TRL-derived apoE. Furthermore, radioactive pulse-chase experiments indicate that apoE recycling is accompanied by cholesterol efflux. Confocal imaging reveals co-localization of apoE and cholesterol in early endosome antigen 1-positive endosomes. During apoE re-secretion, HDL(3)-derived apoA-I is found in these early endosome antigen 1, cholesterol-containing endosomes. As shown by time-lapse fluorescence microscopy, apoE recycling involves the intracellular trafficking of apoA-I to pre-existing and TRL-derived apoE/cholesterol-containing endosomes in the periphery. Thus, these studies provide evidence for a new intracellular link between TRL-derived apoE, cellular cholesterol transport, and HDL metabolism.  相似文献   

7.
8.
Fluorescence studies of a high density serum lipoprotein   总被引:1,自引:0,他引:1  
  相似文献   

9.
We examine here the delivery of gangliosides from the perfused rat liver into the perfusate. One hour after the administration of [3H]GM1 to recirculating perfused livers, almost 80% of the perfusate radioactive gangliosides were recovered associated to the HDL fraction. This fraction was relatively enriched in radioactive GD1a. The pattern of endogenous gangliosides from perfused livers, rat serum and perfusates were very different: GM3 was the main liver ganglioside, GM1 and GD1a were the most abundant in perfusates being GM3 almost absent; GM3, GM1 and GD1a were present in rat serum in similar proportions. Using a non-recirculating perfusion protocol, radioactive gangliosides were found in the HDL fraction since 15 minutes after the administration of [3H]GM1. These results suggest that rat liver supplies the perfusates with some gangliosides and that they are associated to HDL. These facts arise the possibility that the liver is one of the source of serum gangliosides.  相似文献   

10.
I Volf  T Moeslinger  J Cooper  W Schmid  E Koller 《FEBS letters》1999,449(2-3):141-145
The widely studied macrophage scavenger receptor system is known to bind both acetylated low density lipoprotein and oxidized low density lipoprotein. Although only the latter ligand has been shown to occur in vivo, acetylated low density lipoprotein is often used to evaluate the contribution of scavenger receptors to different (patho)physiologic processes, assuming that all existing subtypes of scavenger receptors recognise both lipoproteins. In the present work, we identify human platelets as the first natural cell type to bind oxidized low density lipoprotein without showing specificity for acetylated low density lipoprotein. Consequently, platelets possess exclusive receptor(s) for oxidized low density lipoprotein distinct from the 'classical' scavenger receptor AI/AII. From the data presented in this work, we conclude that the class B scavenger receptor CD36 (GPIV) is responsible for this exclusive oxidized low density lipoprotein binding.  相似文献   

11.
High density lipoprotein (HDL) binds to cell surface receptors and promotes selective removal of excess cholesterol from intracellular pools. The activity of this receptor is up-regulated when cells become loaded with cholesterol, but the relative degree of up-regulation depends on the growth state of the cells. The current study demonstrates that treatment of proliferating fibroblasts with gamma-interferon (IFN) increases the activity of the HDL receptor in association with a decrease in the rate of cell proliferation. Addition of IFN during the growth phase reduced the number of cells but had little effect on total cell protein, indicating that IFN inhibited cell proliferation but produced larger cells. IFN treatment increased the number of high affinity receptors for HDL on the surface of cholesterol-loaded fibroblasts, whether receptor binding was expressed per cell or per unit of cell surface area, cell protein, or cell cholesterol. IFN treatment also appeared to increase the amount of 110-kDa HDL binding protein in fibroblast membranes that has been postulated to represent the HDL receptor molecule. The IFN-induced increase in HDL receptor activity was associated with an enhanced ability of HDL3 to remove cholesterol from intracellular pools. These results are consistent with the hypothesis that inhibition of cell proliferation increases HDL receptor-mediated transport of excess cholesterol from cells, possibly to rid cells of cholesterol that accumulates in response to a reduced rate of membrane synthesis.  相似文献   

12.
Young chickens were administered L-[(3)H]leucine and after 10 or 30 min the livers were removed and fractioned into rough (RER) and smooth (SER) endoplasmic reticulum fractions and into light, intermediate, and heavy golgo cell fractions. The labeled high density lipoprotein (HDL), contained within these intracellular organelles was isolated either by immunoprecipitation using rabbit antiserum to rooster HDL, or by ultracentrifugal glotation between densities 1.063 and 1.21 g/ml. The radioactive apoproteins of nascent HDL were analyzed by SDS PAGE and detected by fluorography. Analyses of radioactive apoproteins obtained by immunoprecipitation from the contents of the RER, the SER, and the three golgi complex fractions revealed only one apoprotein, A1. The C peptide present in serum HDL was not detected intracellularly. The radioactive apoprotein A1 which is present within the cisternae of the RER and the SER fractions failed to float, whereas apoprotein A1, present within the golgi apparatus, readily floated between densities 1.063 and 1.21 g/ml. The HDL particles, isolated by flotation from the golgi apparatus content, were further characterized by lipid and protein analyses and by electron microscopy. Golgi HDL particles have the same density as serum HDL. On a percentage basis, golgi HDL contains less protein and more phospholipids than does serum HDL. Morphologically, golgi HDL is different in appearance from serum HDL. It is more heterogeneous in size, with most of the particles ranging 8.3-25 nm in diameter. The spherical particles contain small membrane tails. Occasionally, a few disk-shaped bilayer structures are also found within the golgi apparatus. These studies show that the newly synthesized apoprotein A1, present within the RER and the SER cell fractions, is not fully complexed with lipid and that apoprotein A1 does not acquire sufficient lipid to float at the proper HDL density until it enters the golgi apparatus. The difference in chemical composition and the heterogeneous size of golgi HDL may be attributed to the different stages of HDL maturation.  相似文献   

13.
The interactions of high density lipoprotein (HDL) and acetylated high density lipoprotein (acetyl-HDL) with isolated rat sinusoidal liver cells have been investigated. Cellular binding of 125I-acetyl-HDL at 0 degrees C demonstrated the presence of a specific, saturable membrane-associated receptor. This receptor was affected neither by formaldehyde-treated albumin nor by low density lipoprotein modified either by acetylation or malondialdehyde, ligands known to undergo receptor-mediated endocytosis by the cells, indicating that the receptor for acetyl-HDL constitutes a distinct class among the scavenger receptors for chemically modified proteins. Parallel binding experiments using 125I-HDL also revealed the presence on these cells of a receptor for unmodified HDL. The ligand specificities of these two receptors were similar to each other except that the acetyl-HDL receptor was sensitive to polyanions such as dextran sulfate and fucoidin. Interaction of HDL with the cells at 37 degrees C was totally different from that of acetyl-HDL. Cellular binding of HDL was not accompanied by subsequent intracellular degradation of its apoprotein moiety, whereas its cholesterol moiety was significantly transferred to the cells. In contrast, acetyl-HDL was endocytosed and underwent lysosomal degradation as a holoparticle. This shift in receptor-recognition from the HDL receptor to the acetyl-HDL receptor was accomplished by acetylation of approximately 8% of the total lysine residues of HDL apoprotein. This unique difference in endocytic behavior between HDL and acetyl-HDL suggests a potential link of the HDL receptor to HDL-mediated cholesterol transfer in sinusoidal liver cells.  相似文献   

14.
  • 1.1. The lipoprotein, a VLDL-like lipoprotein, secreted by cultured eel hepatocytes was incubated with whole eel serum, serum HDL, or serum VLDL. No change in the VLDL-like lipoprotein was found.
  • 2.2. The secreted lipoprotein was incubated with five kinds of liposomes and a HDL-like particle was formed in the presence of BSA only when l-α-dimyristoyl lecithin liposome was used.
  • 3.3. In the presence of 3% BSA, apo AI, proapo AI, apo AII and apo C of the secreted lipoprotein were transferred to the l-α-dimyristoyl lecithin liposome and a HDL-like particle was formed.
  • 4.4. The secreted lipoprotein was hydrolyzed by lipoprotein lipase and a HDL-like particle formed after hydrolysis contained no triglyceride and had phospholipid as its main lipid.
  相似文献   

15.
PURPOSE OF REVIEW: This review will survey recent findings on the cholesterol transport and scavenger functions of scavenger receptor BI. Although scavenger receptor BI and CD36 bind many of the same ligands, these two receptors have very specific lipid transport functions: CD36 facilitates the uptake of long chain fatty acids and SR-BI mediates the transport of cholesterol and cholesteryl ester from HDL particles. Scavenger receptor BI is a physiologically relevant HDL receptor that, along with HDL, is protective against cardiovascular disease. Its atheroprotective role has been hypothesized to be due to its function in the reverse cholesterol transport pathway. RECENT FINDINGS: Recent studies suggest that scavenger receptor BI function is not only crucial for cholesterol delivery to the liver but is also important for cholesterol efflux at the vessel wall. Therefore, the receptor acts at both ends of the reverse cholesterol transport pathway. In addition, it stimulates nitric oxide production in endothelial cells, which may also contribute to its positive influence on the vasculature. Lastly, the glycoprotein was cloned as a scavenger receptor and in some cases is still thought to operate in this fashion. SUMMARY: It will be interesting to follow future research on scavenger receptor BI that will delineate its functions in cholesterol transport as well as its scavenger functions. Additionally, we are only beginning to learn of the glycoprotein's effects on disease states besides atherosclerosis and cardiovascular disease.  相似文献   

16.
17.
We have shown previously that low density lipoprotein (LDL) subjected to vortexing forms self-aggregates that are avidly phagocytosed by macrophages. That phagocytic uptake is mediated by the LDL receptor. We now show that LDL self-aggregation is strongly inhibited (80-95%) by the presence of high density lipoprotein (HDL) or apolipoprotein (apo) A-I. Another type of LDL aggregation, namely that induced by incubation of LDL with phospholipase C, was also markedly inhibited by HDL or apoA-I. The aggregation of LDL induced by vortexing was not inhibited by 2.5 M NaCl, and apoA-I was still able to block LDL aggregation at this high salt concentration, strongly suggesting hydrophobic interactions as the basis for the effect of apoA-I. The fact that apoA-I protected against LDL aggregation induced by two apparently quite different procedures suggests that the aggregation in these two cases has common features. We propose that these forms of LDL aggregation result from the exposure of hydrophobic domains normally masked in LDL and that the LDL-LDL association occurs when these domains interact. ApoA-I, because of its amphipathic character, is able to interact with the exposed hydrophobic domains of LDL and thus block the intermolecular interactions that cause aggregation.  相似文献   

18.
Isolated human plasma low density lipoprotein (LDL) was observed to possess sphingomyelinase activity. Accordingly, the formation of ceramide was catalyzed by LDL at 37 degrees C using tertiary liposomes composed of sphingomyelin (mole fraction (x) = 0.2), 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (x = 0.7), 1, 2-dimyristoyl-sn-glycero-3-phospho-rac-glycerol (x = 0.1), and either the fluorescent sphingomyelin analog Bodipy-sphingomyelin or [(14)C]sphingomyelin as substrates. However, this activity was not present in either very low density lipoprotein or the high density lipoprotein subfractions HDL(2) and HDL(3). Oxidation of LDL abrogated its sphingomyelinase activity. Aggregation of the liposomes upon incubation with LDL was evident from the light scattering measurements. Microinjection of LDL to the surface of giant liposomes composed of 1-stearoyl-2-oleoyl-sn-glycero-3-phosphocholine (SOPC), N-palmitoyl-d-sphingomyelin (C16:0-sphingomyelin), and Bodipy-sphingomyelin as a fluorescent tracer (0.75:- 0.20:0.05, respectively) revealed the induction of vectorial budding of vesicles, resembling endocytosis.  相似文献   

19.
The kinetics of apolipoprotein A-IV associated with high density lipoproteins (HDL) of plasma from fasting human subjects was followed for 15 days in five healthy normolipidemic volunteers. Purified apoA-IV and apoA-I were radioiodinated, respectively, with 125I and 131I, incubated in vitro with normal HDL, isolated at density 1.250 g/ml, and finally reinjected intravenously as HDL-125I-labeled apoA-IV and HDL-131I-labeled apoA-I. Blood samples were withdrawn at regular intervals for 15 days, and 24-h urine samples were collected. More than 93% (93.5 +/- 0.9%) of apoA-IV was recovered in apoA-I-containing lipoprotein particles after affinity chromatography on an anti-apoA-I column and 69.7 +/- 4.8% was bound to apoA-II in apoA-I:A-II particles separated on an anti-apoA-II column. 125I-labeled apoA-IV showed a much faster decay than 131I-labeled apoA-I for the first 5 days and thereafter the curves became parallel. Urinary/plasma ratios (U/P) for the 125I-labeled parallel. Urinary/plasma ratios (U/P) for the 125I-labeled apoA-IV were much higher than those for 131I-labeled apoA-I for the first days, but the U/P curves became parallel for the last 7 days, suggesting heterogeneity of apoA-IV metabolism. A heterogeneous multicompartmental model was constructed to describe the metabolism of lipoprotein particles containing apoA-IV and apoA-I and to calculate the kinetic parameters, fitting simultaneously all plasma and urine data for both tracers.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Human HDLs have highly heterogeneous composition. Plasma concentrations of HDL with apoC-III and of apoE in HDL predict higher incidence of coronary heart disease (CHD). The concentrations of HDL-apoA-I containing apoE, apoC-III, or both and their distribution across HDL sizes are unknown. We studied 20 normal weight and 20 obese subjects matched by age, gender, and race. Plasma HDL was separated by sequential immunoaffinity chromatography (anti-apoA-I, anti-apoC-III, anti-apoE), followed by nondenaturing-gel electrophoresis. Mean HDL-cholesterol concentrations in normal weight and obese subjects were 65 and 50 mg/dl (P = 0.009), and total apoA-I concentrations were 119 and 118 mg/dl, respectively. HDL without apoE or apoC-III was the most prevalent HDL type representing 89% of apoA-I concentration in normal weight and 77% in obese (P = 0.01) individuals; HDL with apoE-only was 5% versus 8% (P = 0.1); HDL with apoC-III-only was 4% versus 10% (P = 0.009); and HDL with apoE and apoC-III was 1.5% versus 4.6% (P = 0.004). Concentrations of apoE and apoC-III in HDL were 1.5–2× higher in obese subjects (P ≤ 0.004). HDL with apoE or apoC-III occurred in all sizes among groups. Obese subjects had higher prevalence of HDL containing apoE or apoC-III, subfractions associated with CHD, whereas normal weight subjects had higher prevalence of HDL without apoE or apoC-III, subfractions with protective association against CHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号