首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of denervation-reinnervation after sciatic nerve crush on the activity of extracellular and intracellular lipoprotein lipase (LPL) were examined in the soleus and red portion of gastrocnemius muscles. The activity of both LPL fractions was decreased in the two muscles within 24 h after the nerve crush and remained reduced for up to 2 wk. During the reinnervation period, LPL activity was still reduced in the soleus and started to increase only on the 40th day. In the red gastrocnemius, LPL activity increased progressively with reinnervation, exceeding control values on the 30th day post-crush. The LPL activity in the soleus from the contralateral to denervated hindlimb was also affected, being increased on the postoperation day and then gradually decreased during the following days. In conclusion, the time course of changes in muscle LPL activity after nerve crush confirmed the predominant role of nerve conduction in controlling muscle potential to take up free fatty acids derived from the plasma triacylglycerols. However, other factors, such as muscle fiber composition and the fiber transformation, should also be considered in this aspect of the denervation-reinnervation process. Moreover, it was found that denervation of muscles from one hindlimb may influence LPL activity in muscles from the contralateral leg.  相似文献   

2.
The effect of two weeks of tenotomy on posttetanic isometric contractile responses of the rat fast: Extensor digitorum longus and slow: soleus muscles was studied in experiments on isolated muscle preparations. Direct tetanic stimulation (100 impulses, 50 Hz) increased the force of contractions by 20-25% (p < 0.05) of both, control and tenotomized fast muscles. Identical to above tetanic stimulation of control, slow muscle resulted in posttetanic depression, a decrease in the amplitude of contractile responses. Tenotomized slow muscles did not develop posttetanic depression. Caffeine (4 mM) increased and dandrolene (10 microM) decreased the force of unitary and tetanic contractions of control and tenotomized muscles. Neither drug, however, affected development of posttetanic phenomena in ether fast or slow muscles. The fact that in extensor digitorum longus, posttetanic potentiation is preserved for at least forty days of tenotomy but disappears after only 2 weeks of denervation suggests important role of neurotrophic influences in regulation of posttetanic responses of fast muscles.  相似文献   

3.
The immunohistochemical profile of intact and denervated soleus muscle of guinea pigs after sensibilization was studied. It is shown, that intact soleus muscle consists of slow fibers, which have low ATP-ase activity and don't react with monoclonal antibodies against fast myosin heavy chain. No changes of immunohistochemical profile were found after denervation or sensibilization. At the same time, the fibers, reacting with monoclonal antibodies against fast myosin heavy chain and having low ATP-ase activity, were found in denervated muscles after sensibilization. It is concluded, that the synthesis of fast myosin is induced after sensibilization of denervated muscles. Validity of myosin ATP-ase histochemistry for muscle fibers typing is discussed.  相似文献   

4.
The conformational state of actin filaments was studied in the rat soleus muscle atrophying after denervation, recovering following reinnervation, hypertrophying following tenotomy of synergists and in intact muscle. Intrinsic (tryptophan residues of F-actin) and extrinsic (rhodamine-phalloidin or 1,5-IAEDANS attached to F-actin) polarized fluorescence was measured. In parallel, the influence of ATP or NEM on the state of F-actin was studied. The results show that the conformational state of F-actin is changed in all experimental muscles. These changes of the denervated muscle differ from those of the reinnervated and hypertrophying muscles. In the reinnervated muscle, beginning with the first days of recovery, the structure of F-actin seems to "recover" to the state in intact muscle. In the later stage of muscle recovery, the state of F-actin is similar to that in hypertrophying muscle. Differences between the mentioned muscles in the conformational state of actin monomers, in the orientation of monomers and in the flexibility of thin filaments are discussed.  相似文献   

5.
The rapid growth (1-6 days) of the functionally overloaded soleus muscle, in response to tenotomy of the synergist gastrocnemius, was found to correlate with increases in both the protein synthetic and degradative rates, the change in the former being greater than that of the latter. These conclusions were drawn from two different methods used to measure (in vivo and in vitro) the average rates of protein synthesis and protein breakdown in these soleus muscles. Although the basal rates of synthesis were higher when measured in vivo, and the degradative rates higher in isolated muscle preparations incubated in vitro, both methods gave good agreement concerning the changes in protein turnover induced by tenotomy of the gastrocnemius. The possible involvement of passive stretch in inducing this additional growth is discussed. As an antagonist to the soleus, growth of the extensor digitorum longus muscle was decreased under the same conditions, presumably because of less usage. At 3 days after the cutting of the sciatic nerve, the previously normal or overloaded soleus muscles underwent rapid atrophy. Although in both cases RNA and protein were lost, while protein synthesis decreased and protein breakdown increased, denervation induced larger changes within these parameters of the formerly overloaded muscle. The slowing of growth in the tenotomized gastrocnemius, and its subsequent rapid atrophy after additional denervation, were explained by large increases in protein breakdown, with little or no change in the synthetic rate.  相似文献   

6.
Innervation has been generally accepted to be a major factor involved in both triggering and maintaining the expression of slow myosin heavy chain (MHC-1) in skeletal muscle. However, previous findings from our laboratory have suggested that, in the mouse, this is not always the case (30). Based on these results, we hypothesized that neurotomy would not markedly reduced the expression of MHC-1 protein in the mouse soleus muscles. In addition, other cellular, biochemical, and functional parameters were also studied in these denervated soleus muscles to complete our study. Our results show that denervation reduced neither the relative amount of MHC-1 protein, nor the percentage of muscle fibers expressing MHC-1 protein (P > 0.05). The fact that MHC-1 protein did not respond to muscle inactivity was confirmed in three different mouse strains (129/SV, C57BL/6, and CD1). In contrast, all of the other histological, biochemical, and functional muscle parameters were markedly altered by denervation. Cross-sectional area (CSA) of muscle fibers, maximal tetanic isometric force, maximal velocity of shortening, maximal power, and citrate synthase activity were all reduced in denervated muscles compared with innervated muscles (P < 0.05). Contraction and one-half relaxation times of the twitch were also increased by denervation (P < 0.05). Addition of tenotomy to denervation had no further effect on the relative expression of MHC-1 protein (P > 0.05), despite a greater reduction in CSA and citrate synthase activity (P < 0.05). In conclusion, a deficit in neural input leads to marked atrophy and reduction in performance in mouse soleus muscles. However, the maintenance of the relative expression of slow MHC protein is independent of neuromuscular activity in mice.  相似文献   

7.
This study was designed to determine whether the reductions in GLUT-4 seen in 3-day-denervated muscles can be prevented through chemical activation of 5'-AMP-activated protein kinase (AMPK). Muscle AMPK can be chemically activated in rats using subcutaneous injections with 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR). In this study, the tibial nerve was sectioned on one side; the other was sham operated but without nerve section. Acute injections of AICAR resulted in significantly increased AMPK activity in denervated gastrocnemius but not soleus muscles. Acetyl-CoA carboxylase activity, a reporter of AMPK activation, declined in both gastrocnemius and soleus in both denervated and contralateral muscles. Three days after denervation, GLUT-4 levels were significantly decreased by approximately 40% in gastrocnemius muscles and by approximately 30% in soleus muscles. When rats were injected with AICAR (1 mg/g body wt) for 3 days, the decline in GLUT-4 levels was prevented in denervated gastrocnemius muscles but not in denervated soleus muscles. The extent of denervation-induced muscle atrophy was similar in AICAR-treated vs. saline-treated rats. These studies provide evidence that some effects of denervation may be prevented by chemical activation of the appropriate signaling pathways.  相似文献   

8.
Muscle growth was established in specific muscles in the hindlimb of adult female rats by tenotomy of the gastrocnemius muscle. Seven days after surgery there was an increase in the wet weight of the soleus (Sol) and plantaris (P) muscles and a decrease in that of the gastrocnemius (G) muscle from the tenotomized limb compared with the respective control muscles from the contralateral limb from the same animal. In all three muscles there was a significant increase in the fractional rate of protein synthesis (ks) in the muscles from the tenotomized limb above the rate of the respective control muscles. In contrast, the extensor digitorum longus (EDL) muscle showed no change in wet weight or ks 7 days after tenotomy of G. Fasting for 12 or 36 h had no significant effect on ks in G, P, or Sol muscles from either the control or tenotomized limbs. In EDL from the control limb, both fasting periods resulted in a significant decrease in ks, although this effect was not seen in the EDL from the tenotomized limbs of the same animals. A subsequent 30-min insulin infusion was similarly ineffectual in G, P, and Sol, with its only effect evident in the EDL from the control limb, where it was sufficient to reverse the decreased ks resulting from the fasting, even though after 36 h fasting the reversal was only partial.  相似文献   

9.
Effects of hindlimb suspension, tenotomy, denervation, and/or the combination of these models on plantar-flexors were studied in adult rats. Suspension-induced atrophy was not promoted by addition of tenotomy. But the magnitude of the atrophy was advanced if denervation or both denervation and tenotomy were combined with 5-day hindlimb suspension. Similar effects were noted in the cross-sectional area of single muscle fibers, especially of slow-twitch fibers. A shift of muscle fiber type from slow- to fast-twitch type was also induced mainly in soleus. The atrophy and fiber transformation were closely associated with a passive shortening of muscle due to the plantar-flexion of ankle and/or tenotomy and a disappeared electrical activity caused by denervation. The fiber atrophy, but not the shift of fiber type, was further advanced by the combination of tenotomy and denervation. It is suggested that muscle atrophy is caused by the decreased fiber size and protein content. The water content was also reduced proportionally.  相似文献   

10.
This study examined dihydropyridine receptor (DHPR) gene expression in mouse skeletal muscles during physiological adaptations to disuse. Disuse was produced by three in vivo models—denervation, tenotomy, and immobilization—and DHPR 1s mRNA was measured by quantitative Northern blot. After 14-day simultaneous denervation of the soleus (Sol), tibialis anterior (TA), extensor digitorum longus (EDL), and gastrocnemius (Gastr) muscles by sciatic nerve section, DHPR mRNA increased preferentially in the Sol and TA (+1.6-fold), whereas it increased in the EDL (+1.6-fold) and TA (+1.8-fold) after selective denervation of these muscles by peroneal nerve section. It declined in all muscles (–1.3- to –2.6-fold) after 14-day tenotomy, which preserves nerve input but removes mechanical tension. Atrophy was comparable in denervated and tenotomized muscles. These results suggest that factor(s) in addition to inactivity per se, muscle phenotype, or associated atrophy can regulate DHPR gene expression. To test the contribution of passive tension to this regulation, we subjected the same muscles to disuse by limb immobilization in a maximally dorsiflexed position. DHPR 1s mRNA increased in the stretched muscles (Sol, +2.3-fold; Gastr, +1.5-fold) and decreased in the shortened muscles (TA, –1.4-fold; EDL, –1.3-fold). The effect of stretch was confirmed in vitro. DHPR protein did not change significantly after 4-day immobilization, suggesting that additional levels of regulation may exist. These results demonstrate that DHPR 1s gene expression is regulated as an integral part of the adaptive response of skeletal muscles to disuse in both slow- and fast-twitch muscles and identify passive tension as an important signal for its regulation in vivo. dihydropyridine receptor mRNA; decreased use; passive tension; denervation; tenotomy; hindlimb immobilization  相似文献   

11.
In order to clarify the cellular mechanisms of denervation atrophy of skeletal muscle, we have studied protein turnover in denervated and control rat soleus muscles in vitro under different conditions. By 24 h after cutting the sciatic nerve, overall protein breakdown was greater in the denervated soleus than in the contralateral control muscle, and by 3 days, net proteolysis had increased about 3-fold. Since protein synthesis increased slightly following denervation, the rise in proteolysis must be responsible for the muscle atrophy and the differential loss of contractile proteins. Like overall proteolysis, the breakdown of actin (as shown by 3-methyl-histidine production by the muscles) increased each day after denervation and by 3 days was 2.5 times faster than in controls. Treatments that block the lysosomal and Ca2(+)-dependent proteolytic systems did not reduce the increase in overall protein degradation and actin breakdown in the denervated muscles (maintained in complete medium at resting length). However, the content of the lysosomal protease, cathepsin B, increased about 2-fold by 3 days after denervation. Furthermore, conditions that activate intralysosomal proteolysis (incubation without insulin or amino acids) stimulated proteolysis 2-3-fold more in the denervated muscles than in controls. Also, incubation conditions that activate the Ca2(+)-dependent pathway (incubation with Ca2+ ionophores or allowing muscles to shorten) were 2-3 times more effective in enhancing overall proteolysis in the denervated muscle. None of these treatments affected 3-methylhistidine production. Thus, multiple proteolytic systems increase in parallel in the denervated muscle, but a nonlysosomal process (independent of Ca2+) appears mainly responsible for the rapid loss of cell proteins, especially of myofibrillar components.  相似文献   

12.
13.
The effects of Ca2+ on the RNA polymerase activity of the nuclei isolated from normal and denervated gastrocnemius muscles of the rabbit were studied. It was shown that 18 hrs after denervation the RNA synthesis in vitro, Ca2+ content and the Ca, Mg-ATPase activity of the nuclei are decreased. After addition of exogenous Ca2+ the incorporation of labelled UTP into the nuclei is stimulated in the denervated muscle and is inhibited in the control. Electrostimulation of the denervated muscle at the peripheral part of the sciatic nerve for 3 hrs increases both the RNA synthesis in the nuclei and the Ca2+ content, as well as the Ca, Mg-ATPase activity. Exogenous Ca2+ has an inhibitory effect on the nuclei of the stimulated muscle. The correlation established is indicative of participation of Ca2+ in the transmission of excitation in skeletal muscle sarcolemma to the processes occurring in nuclear structures.  相似文献   

14.
Summary Changes of muscle weights, fiber diameters and ultrastructure were studied in the slow anterior latissimus dorsi (ALD) and in the fast posterior latissimus dorsi (PLD) of the chick three weeks after denervation and tenotomy, and after combined denervation and tenotomy of the two muscles.The slow ALD muscle becomes hypertrophic after denervation (Feng, Jung and Wu, 1962). Three weeks after nerve section, wet weights of ALD muscles are increased by 60% and fiber diameters become by 30% larger than those of contralateral control muscles. In spite of this hypertrophy, degenerative changes are seen in the ultrastructure, similar to those described in denervated atrophic muscles. Areas of dedifferentiation with autophagic vacuoles and aggregates of tubules are found in superficial layers of some fibers. Disintegration of Z lines and filaments along one or two sarcomeres occurs in a number of myofibrils, especially in muscles of young animals.In contrast to denervation alone, simultaneous denervation and tenotomy of the ALD muscles results in atrophy. Decrease of muscle weights and reduction of fiber diameters are similar as after tenotomy; in both cases muscle fibers waste by degeneration and atrophy of myofibrils.The fast PLD muscles underwent extensive atrophy in all three series of experiments. Corresponding atrophic and degenerative changes of ultrastructure were found in all instances.The authors wish to acknowledge gratefully the skillful technical assistance of Mrs. M. Sobotková and Ing. M. Doubek, and editorial assistance of Miss Virginia Hamilton.  相似文献   

15.
Native glycogen was prepared from intact and 12 and 36 h denervated white and red rat muscles, ultracentrifuged on a sucrose density gradient (3) and the fractions stained by the iodine method (4). An increase of the optical density of the fractions showing a relatively high density was observed, which may be related to the well known changes of muscle glycogen levels after denervation.  相似文献   

16.
We have examined the independent and combined effects of insulin insufficiency (streptozotocin (STZ)-induced diabetes, 85 mg/kg i.p.) and reduced muscle activity (denervation) (7 days) on basal, insulin-stimulated and contraction-stimulated glucose transport in rat muscles (soleus, red and white gastrocnemius). There were four treatments: control, denervated, diabetic, and denervated + diabetic muscles. Contraction-stimulated glucose transport was lowered (~ 50%) (p < 0.05) to the same extent in all experimental groups. In contrast, there was a much smaller reduction insulin-stimulated glucose transport in muscles from diabetic animals (18-24% reduction, p < 0.05) than in denervated muscles (40-60% reduction, p < 0.05) and in denervated + diabetic muscles (40-60% reduction, p < 0.05). GLUT-4 mRNA reduction was greatest in denervated + diabetic muscles (~ -75%, p < 0.05). GLUT-4 protein was decreased (p < 0.05) to a similar extent in all three experimental conditions (~ -30-40%). In conclusion, (1) muscle inactivity (denervation) and STZ-induced diabetes had similar effects on reducing contraction-stimulated glucose transport, but (2) muscle inactivity (denervation), rather than severe diabetes, produced a 2-fold greater impairment in skeletal muscle insulin-stimulated glucose transport.  相似文献   

17.
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

18.
《Autophagy》2013,9(4):631-641
Skeletal muscle atrophy is thought to result from hyperactivation of intracellular protein degradation pathways, including autophagy and the ubiquitin–proteasome system. However, the precise contributions of these pathways to muscle atrophy are unclear. Here, we show that an autophagy deficiency in denervated slow-twitch soleus muscles delayed skeletal muscle atrophy, reduced mitochondrial activity, and induced oxidative stress and accumulation of PARK2/Parkin, which participates in mitochondrial quality control (PARK2-mediated mitophagy), in mitochondria. Soleus muscles from denervated Park2 knockout mice also showed resistance to denervation, reduced mitochondrial activities, and increased oxidative stress. In both autophagy-deficient and Park2-deficient soleus muscles, denervation caused the accumulation of polyubiquitinated proteins. Denervation induced proteasomal activation via NFE2L1 nuclear translocation in control mice, whereas it had little effect in autophagy-deficient and Park2-deficient mice. These results suggest that PARK2-mediated mitophagy plays an essential role in the activation of proteasomes during denervation atrophy in slow-twitch muscles.  相似文献   

19.
Nonpolar and polar lipids extracted from denervated rat gastrocnemius, plantaris, and soleus muscles were measured 7–9 days after unilateral sciatic nerve transection. The contralateral muscle (CCON) was used to obtain control lipid levels. After denervation changes in lipid concentrations were found in all three muscles. These alterations in lipid levels were generally in the same direction but not to the same extent. The change in total nonpolar lipids (NL) was an increase in soleus > gastrocnemius > plantaris concentration. This change in lipid concentration was more apparent than real since the wet weight of muscle was decreased after denervation. Since polar lipid (PL) concentrations were not increased under these conditions of muscle weight loss, an actual decrease of polar lipids after denervation may be inferred.In contrast to the other two muscles, a marked difference was noted for polar lipids of denervated gastrocnemius muscle. An unidentified spot near the origin was detected. This area is the location of a nerve sprouting factor(s). The compound(s) was not detectable for the other two muscles. When the gastrocnemius from an unoperated animal rather than a CCON muscle was used as a benchmark, slight increases were found for total nonpolar, polar, and plasmalogen fractions following denervation. The changes for individual lipid fractions were less definable, except for the significant increase for the unknown polar compound near the origin. This spot was noted in extracts from CCON and DEN muscles but not in untouched control muscle. The CCON gastrocnemius muscle is therefore a poor control for determining effects of denervation on lipid levels and perhaps other biochemical parameters as well.  相似文献   

20.
The increased inorganic phosphate flow, characteristic of denervated gastrocnemius muscle is shown to be present in additional denervated fast muscles, i.e. the plantaris, tibialis anterior and extensor digitorum longus muscles. The response of the soleus, a slow muscle, to denervation is biphasic. After an initial decrease of the phosphate flow at the end of the first postoperative day, there is a secondary rise which has the same general characteristics as the rise observed in fast muscles i.e. an exponential or hyperbolic increase to an asymptotic value reached after thirty days. The denervated fast and slow muscles are not converging to an intermediate metabolic pattern. The changes in phosphate flow induced by denervation are reversible in the soleus as well as in the gastrocnemius muscles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号