首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The phylogenetic relationships among the southern African freshwater crab species were examined using partial sequence data from three mitochondrial genes (12S rRNA, 16S rRNA, and mtDNA COI) 26 morphological characters and 14 allozyme loci. The aims of the present study were firstly to determine whether freshwater crab species that live in the same geographic region share a close phylogenetic relationship. Secondly, to investigate whether hybridizing species are genetically closely related and thirdly, to test for the validity of subgenera based on the genetic data sets. Phylogenetic analysis based on sequence data revealed largely congruent tree topologies and some associations had consistently high bootstrap support, and these data did not support Bott's subgeneric divisions. The morphological data were less informative for phylogenetic reconstruction while the allozyme data generally supported patterns recovered by the sequence data. A combined analysis of all the data recovered two monophyletic clades, one comprised of small-bodied mountain stream species and the other clade consisting of large-bodied riverine species. The combined analyses reflected clear biogeographic patterning for these river crabs. In addition, there was a clear correlation between genetic distance values and the ability of sympatric species to hybridize.  相似文献   

2.
The molecular phylogeny of parabasalids has mainly been inferred from small subunit (SSU) rRNA sequences and has conflicted substantially with systematics based on morphological and ultrastructural characters. This raises the important question, how congruent are protein and SSU rRNA trees? New sequences from seven diverse parabasalids (six trichomonads and one hypermastigid) were added to data sets of glyceraldehyde-3-phosphate dehydrogenase (GAPDH), enolase, alpha-tubulin and beta-tubulin and used to construct phylogenetic trees. The GAPDH tree was well resolved and identical in topology to the SSU rRNA tree. This both validates the rRNA tree and suggests that GAPDH should be a valuable tool in further phylogenetic studies of parabasalids. In particular, the GAPDH tree confirmed the polyphyly of Monocercomonadidae and Trichomonadidae and the basal position of Trichonympha agilis among parabasalids. Moreover, GAPDH strengthened the hypothesis of secondary loss of cytoskeletal structures in Monocercomonadidae such as Monocercomonas and Hypotrichomonas. In contrast to GAPDH, the enolase and both tubulin trees are poorly resolved and rather uninformative about parabasalian phylogeny, although two of these trees also identify T. agilis as representing the basal-most lineage of parabasalids. Although all four protein genes show multiple gene duplications (for 3-6 of the seven taxa examined), most duplications appear to be relatively recent (i.e., species-specific) and not a problem for phylogeny reconstruction. Only for enolase are there more ancient duplications that may confound phylogenetic interpretation.  相似文献   

3.
The spider family Pholcidae comprises a large number of mainly tropical, web-weaving spiders, and is among the most diverse and dominant spider groups in the world. The phylogeny of this family has so far been investigated exclusively using morphological data. Here, we present the first molecular data for the family analyzed in a phylogenetic context. Four different gene regions (12S rRNA, 16S rRNA, cytochrome c oxidase subunit I, 28S rRNA) and 45 morphological characters were scored for 31 pholcid and three outgroup taxa. The data were analyzed both for individual genes, combined molecular data, and molecular plus morphological data, using parsimony, maximum likelihood, and Bayesian methods. Some of the phylogenetic hypotheses obtained previously using morphology alone were also supported by our results, like the monophyly of pholcines and of the New World clade. On the other hand, some of the previous hypotheses could be discarded with some confidence (monophyly of holocnemines, the position of Priscula), and still others need further investigation (the position of holocnemines, ninetines, and Metagonia). The data obtained provide an excellent basis for future investigations of phylogenetic patterns both within the family and among spider families.  相似文献   

4.
The phylogenetic relationships of 39 species of Eneopterinae crickets are reconstructed using four molecular markers (16S rRNA, 12S rRNA, cytochrome b, 18S rRNA) and a large morphological data set. Phylogenetic analysis via direct optimisation of DNA sequence data using parsimony as optimality criterion is done for six combinations of weighting parameter sets in a sensitivity analysis. The results are discussed in a twofold purpose: first, in term of significance of the molecular markers for phylogeny reconstruction in Ensifera, as our study represents the first molecular phylogeny performed for this insect suborder at this level of diversity; second, in term of corroboration of a previous phylogeny of Eneopterinae, built on morphological data alone. The four molecular markers all convey phylogenetic signal, although variously distributed on the tree. The monophyly of the subfamily, that of three over five tribes, and of 10 over 13 genera, are recovered. Finally, previous hypotheses on the evolution of acoustic devices and signals in the Eneopterinae clade are briefly tested, and supported, by our new data set.  相似文献   

5.
6.
A molecular phylogeny is presented for the subfamily Littorininae (including representatives of all subgeneric taxa and all members of a group of southern-temperate species formerly classified as 'Nodilittorina'), based on sequence data from two nuclear (18S rRNA, 28S rRNA) and two mitochondrial (12S rRNA, CO1) genes. The phylogeny shows considerable disagreement with earlier hypotheses derived from morphological data. In particular, 'Nodilittorina' is polyphyletic and is here divided into four genera (Echinolittorina, Austrolittorina, Afrolittorina new genus, and the monotypic Nodilittorina s.s.). The phylogenetic relationships of 'Littorina' striata have been controversial and it is here transferred to the genus Tectarius, a surprising relationship for which there is little morphological support. The relationships of the enigmatic Mainwaringia remain poorly resolved, but it is not a basal member of the subfamily. The two living species of Mainwaringia are remarkable for a greatly elevated rate of evolution in all four genes examined; it is suggested that this may be connected with their protandrous hermaphroditism, which is unique in the family. The molecular phylogeny provides a new framework for the adaptive radiation of the Littorininae, showing more frequent shifts between habitats and climatic regimes than previously suspected, and striking parallelism of morphological characters. The fossil record of littorinids is poor, but ages of clades are estimated using a calibration based on a Lower Eocene age of the genus Littoraria. Using these estimates, the antitropical distribution of Littorina and Afrolittorina is an ancient pattern of possibly Cretaceous age. The five members of Austrolittorina show a Gondwanan distribution in Australia, New Zealand, and South America. Based on the morphological uniformity within this clade, relatively recent (Plio-Pleistocene) trans-Pacific dispersal events seemed a likely explanation, as proposed for numerous other congeneric marine taxa. However, molecular estimation of ages of divergence suggest an initial vicariance between Australian and South American lineages at 40-73Ma, contemporary with the later stages of fragmentation of the Gondwanan supercontinent, followed by more recent (but still mid-Cenozoic) dispersal events across the Tasman Sea and the Pacific Ocean. Afrolittorina is another Cretaceous clade, now restricted to southern Africa and southern Australia, but divergence between these lineages (29-55Ma) post-dates Gondwanan fragmentation. Within both Austrolittorina and Afrolittorina all sister-species divergences are estimated to fall in the range 10-47Ma, so that there is no evidence for speciation events in the Plio-Pleistocene.  相似文献   

7.
The taxonomy of Volvocales (Chlorophyceae, Chlorophyta) was traditionally based solely on morphological characteristics. However, because recent molecular phylogeny largely contradicts the traditional subordinal and familial classifications, no classification system has yet been established that describes the subdivision of Volvocales in a manner consistent with the phylogenetic relationships. Towards development of a natural classification system at and above the generic level, identification and sorting of hundreds of sequences based on subjective phylogenetic definitions is a significant step. We constructed an 18S rRNA gene phylogeny based on 449 volvocalean sequences collected using exhaustive BLAST searches of the GenBank database. Many chimeric sequences, which can cause fallacious phylogenetic trees, were detected and excluded during data collection. The results revealed 21 strongly supported primary clades within phylogenetically redefined Volvocales. Phylogenetic classification following PhyloCode was proposed based on the presented 18S rRNA gene phylogeny along with the results of previous combined 18S and 26S rRNA and chloroplast multigene analyses.  相似文献   

8.
Kopp A  True JR 《Systematic biology》2002,51(5):786-805
The melanogaster species group of Drosophila (subgenus Sophophora) has long been a favored model for evolutionary studies because of its morphological and ecological diversity and wide geographic distribution. However, phylogenetic relationships among species and subgroups within this lineage are not well understood. We reconstructed the phylogeny of 17 species representing 7 "oriental" species subgroups, which are especially closely related to D. melanogaster. We used DNA sequences of four nuclear and two mitochondrial loci in an attempt to obtain the best possible estimate of species phylogeny and to assess the extent and sources of remaining uncertainties. Comparison of trees derived from single-gene data sets allowed us to identify several strongly supported clades, which were also consistently seen in combined analyses. The relationships among these clades are less certain. The combined data set contains data partitions that are incongruent with each other. Trees reconstructed from the combined data set and from internally homogenous data sets consisting of three or four genes each differ at several deep nodes. The total data set tree is fully resolved and strongly supported at most nodes. Statistical tests indicated that this tree is compatible with all individual and combined data sets. Therefore, we accepted this tree as the most likely model of historical relationships. We compared the new molecular phylogeny to earlier estimates based on morphology and chromosome structure and discuss its taxonomic and evolutionary implications.  相似文献   

9.
The phylogeny of the obscure metazoan phylum Gnathostomulida has previously only been addressed with cladistic analyses of morphological data. In the present study DNA sequence data from four molecular loci, including 18S rRNA, 28S rRNA, histone H3 and cytochrome c oxidase subunit I, are added to a revised morphological data matrix. The data set represents 23 gnathostomulid species that are analyzed under direct optimization using parsimony as the optimality criterion. The results obtained from analyzing the four molecular loci and combined morphological and molecular data under different parameter sets are generally very congruent, and differ only on minor points. The results clearly support gnathostomulid monophyly, as well as the basal division of Gnathostomulida into Filospermoidea and Bursovaginoidea. Filospermoidea were represented by species of Haplognathia and Cosmognathia, and generic monophyly is supported for both groups. Within Bursovaginoidea, Conophoralia (= Austrognathiidae) and Scleroperalia appear as sister groups. Monophyly of Mesognathariidae was confirmed as well, whereas the relationships between species of Gnathostomulidae and Onychognathiidae were contradicted by the molecular data when compared to morphological observations. ©The Willi Hennig Society 2006.  相似文献   

10.
11.
New clades of euthyneuran gastropods (Mollusca) from 28S rRNA sequences   总被引:4,自引:0,他引:4  
Recent morphological and molecular results on phylogeny of euthyneuran gastropods, which include opisthobranchs and pulmonates, have greatly diminished previous supposed resolution of their phylogenetic relationships. In addition to recent morphological results, sequences of the D1 and D2 domains of the 28S rRNA are here analyzed by parsimony for 31 euthyneuran species. The molecular and previous morphological data sets were not congruent according to an ILD test, and morphological and molecular data could not be analyzed simultaneously. Consequently Bremer's Combinable Component Consensus was used to obtain a new tree, with the following supported molecular results: monophyly of a new clade of opisthobranchs including actively swimming Euthyneura, i.e., pelagic Gymnosomata and Thecosomata plus benthic Anaspidea; first molecular confirmation of monophylies of Hygrophila, including Chilina, Acteonoidea, and Sacoglossa, which include both shell-bearing species and slugs; and new confirmation of the monophyly of Stylommatophora. Morphological characters which support the new clades obtained here are discussed.  相似文献   

12.
A molecular phylogeny of the rodent superfamily Cavioidea was derived using two nuclear sequences (exon #10 of the growth hormone receptor gene and intron #1 of the transthyretin gene) and one mitochondrial gene (12S rRNA). A combined analysis produced a highly derived and well-supported phylogenetic hypothesis that differed from traditional taxonomy primarily in the placement of two taxa. Kerodon, traditionally included within the subfamily Caviinae with guinea pigs and its relatives, is placed sister to the family Hydrochaeridae and closely aligned with the subfamily Dolichotinae. Inclusion of Hydrochaeris within the Caviidae renders the familial classification paraphyletic. Our data further support the taxonomic separation of the families Agoutidae and Dasyproctidae. Both the molecular and traditional morphological interpretations are assessed in testing an ecological constraints hypothesis regarding social behaviors. Whereas traditional taxonomy is consistent with an environmental constraints explanation for social behavior, the molecular data suggest that phylogenetic effects may be a more important factor in the evolution of social behavior in this group. Although lineage-specific rate heterogeneity was identified in all three molecular data sets, no significant support was obtained for the metabolic rate hypothesis. However, both nuclear genes displayed patterns in accordance with the generation time hypothesis.  相似文献   

13.
PCR primer sets were developed for the specific amplification and sequence analyses encoding the gyrase subunit B (gyrB) of members of the family Microbacteriaceae, class Actinobacteria. The family contains species highly related by 16S rRNA gene sequence analyses. In order to test if the gene sequence analysis of gyrB is appropriate to discriminate between closely related species, we evaluate the 16S rRNA gene phylogeny of its members. As the published universal primer set for gyrB failed to amplify the responding gene of the majority of the 80 type strains of the family, three new primer sets were identified that generated fragments with a composite sequence length of about 900 nt. However, the amplification of all three fragments was successful only in 25% of the 80 type strains. In this study, the substitution frequencies in genes encoding gyrase and 16S rDNA were compared for 10 strains of nine genera. The frequency of gyrB nucleotide substitution is significantly higher than that of the 16S rDNA, and no linear correlation exists between the similarities of both molecules among members of the Microbacteriaceae. The phylogenetic analyses using the gyrB sequences provide higher resolution than using 16S rDNA sequences and seem able to discriminate between closely related species.  相似文献   

14.
Phylogeny of the Platyhelminthes and the evolution of parasitism   总被引:4,自引:0,他引:4  
Robust phylogenies provide the basis for interpreting biological variation in the light of evolution. Homologous features provide phylogenetically informative characters whereas homoplasious characters provide phylogenetic noise. Both provide evolutionary signal. We have constructed molecular and morphologically based phylogenies of the phylum Platyhelminthes using a recently revised morphological character matrix and complete 18S and two partial 28S rRNA gene sequences in order to evaluate the emergence and subsequent divergence of parasitic forms. In total we examine 65 morphological characters, 97 18S rDNA, 41 Dl domain 28S rDNA, and 49 D3-D6 domain 28S rDNA sequences. For the molecular data there were 748, 132 and 249 phylogenetically informative sites for the 18S, Dl and D3-D6 28S rDNA data sets respectively. Morphological and molecular phylogenetic solutions are incongruent but not incompatible, and using the principles of conditional combination (18S rDNA + morphology passing Templeton's test) they demonstrate: a single and relatively early origin for the parasitic Neodermata (including the cestodes, trematodes and monogeneans); sister-group status between the cestodes and monogeneans, and between these taxa and the trematodes (digeneans and aspidogastreans). The sister-group to the Neodermata is likely to be a large clade of neoophoran turbellarians, based on combined evidence, or a clade consisting of the Fecampiid + Urastomid turbellarians, based on morphological evidence alone. The combined evidence solution for the phylogeny of fiatworms based on 18S rDNA and morphology is used to interpret morphological and life-history data and to support a model for the evolution and radiation of neodermatan parasites in the group.  相似文献   

15.
We investigated the phylogenetic relationships among five species of lampridiform fishes, three basal outgroup species (two aulopiforms and one myctophiform), and two species of non-lampridiform acanthomorphs (Polymixia and Percopsis) using a combined parsimony analysis of morphological and molecular data. Morphological characters included 28 transformation series obtained from the literature. Molecular characters included 223 informative transformation series from an aligned 854-base pair fragment of 12S mtDNA and 139 informative transformation series from an aligned 561-base pair fragment of 16S mtDNA. A total-evidence analysis using the aulopiforms Synodus and Aulopus and the myctophiform Hygophum as outgroups corroborates the monophyly of Lampridiformes and unites Polymixia with Percopsis. Among the lampridiform fishes we examined, Metavelifer is basal, followed in ascending order by Lampris, Lophotus, Regalecus, and Trachipterus. This hypothesis is congruent with the most recent morphological analysis of the Lampridiformes and rejects a diphyletic origin of elongate body form within the clade. Analysis of a combined matrix of 12S and 16S mtDNA data yielded a phylogenetic hypothesis isomorphic with the total-evidence phylogeny. Analyses of partitioned DNA data sets reveals that single gene regions are poor predictors of the total-evidence phylogeny while combined analyses of both DNA data sets are good predictors of the total-evidence phylogeny.  相似文献   

16.
Phylogenetics of Perissodactyla and Tests of the Molecular Clock   总被引:3,自引:0,他引:3  
Two mitochondrial genes, the protein-coding cytochrome c oxidase subunit II (COII) gene and a portion of the 12S rRNA gene, were used for phylogenetic investigation of the mammalian order Perissodactyla. The primary objective of the study was to utilize the extensive fossil record of perissodactyls for calibrating molecular clocks and comparing estimates of divergence times using both genes and two fossil calibration points. Secondary objectives included clarification of previously unresolved relationships within Tapiridae and comparison of the results of separate and combined analyses of two genes. Analyses included several perissodactyl lineages representing all three families (Tapiridae, Equidae, and Rhinocerotidae), most extant genera, all four species of tapirs, two to four species of rhinoceros, and two species of Equus. The application of a relatively recent fossil calibration point and a relatively ancient calibration point produced greatly different estimates of evolutionary rates and divergence times for both genes, even though a relative rates test did not find significant rate differences among taxa. A likelihood-ratio test, however, rejected a molecular clock for both genes. Neither calibration point produced estimates of divergence times consistent with paleontological evidence over a range of perissodactyl radiations. The combined analysis of both genes produces a well-resolved phylogeny with Perissodactyla that conforms to traditional views of interfamilial relationships and supports monophyly of neotropical tapirs. Combining the data sets increases support for most nodes but decreases the support for a neotropical tapir clade because the COII and 12S rRNA data sets are in conflict for tapir relationships. Received: 6 January 1999 / Accepted: 2 August 1999  相似文献   

17.
Phylogenetic diversity--patterns of phylogenetic relatedness among organisms in ecological communities--provides important insights into the mechanisms underlying community assembly. Studies that measure phylogenetic diversity in microbial communities have primarily been limited to a single marker gene approach, using the small subunit of the rRNA gene (SSU-rRNA) to quantify phylogenetic relationships among microbial taxa. In this study, we present an approach for inferring phylogenetic relationships among microorganisms based on the random metagenomic sequencing of DNA fragments. To overcome challenges caused by the fragmentary nature of metagenomic data, we leveraged fully sequenced bacterial genomes as a scaffold to enable inference of phylogenetic relationships among metagenomic sequences from multiple phylogenetic marker gene families. The resulting metagenomic phylogeny can be used to quantify the phylogenetic diversity of microbial communities based on metagenomic data sets. We applied this method to understand patterns of microbial phylogenetic diversity and community assembly along an oceanic depth gradient, and compared our findings to previous studies of this gradient using SSU-rRNA gene and metagenomic analyses. Bacterial phylogenetic diversity was highest at intermediate depths beneath the ocean surface, whereas taxonomic diversity (diversity measured by binning sequences into taxonomically similar groups) showed no relationship with depth. Phylogenetic diversity estimates based on the SSU-rRNA gene and the multi-gene metagenomic phylogeny were broadly concordant, suggesting that our approach will be applicable to other metagenomic data sets for which corresponding SSU-rRNA gene sequences are unavailable. Our approach opens up the possibility of using metagenomic data to study microbial diversity in a phylogenetic context.  相似文献   

18.
The urostylid genus Metaurostylopsis Song et al., 2001 was considered to be a well-outlined taxon. Nevertheless, recent evidence, including morphological, ontogenetic, and molecular information, have consistently revealed conflicts among congeners, regarding their systematic relationships, ciliature patterns, and origins of ciliary organelles. In the present work, the morphogenetic and morphogenetic features were re-checked and compared, and the phylogeny of nominal species was analysed based on information inferred from the small subunit ribosomal RNA (SS rRNA) gene sequence. In addition, the binary divisional process in a new isolate of Metaurostylopsis struederkypkeae Shao et al., 2008 is described. All results obtained reveal that the genus is a polyphyletic assemblage whose nominal congeners fall into three clades within the core Urostylida, based on SS rRNA gene sequences. These three clades not match the groups inferred from morphological/morphogenetical evidences. Some conflicting data from molecular and ontogenetic studies also indicate that single-gene information might not be consistently reliable in detecting the phylogenetic relationships among closely related groups and comprehensive multi-gene analyses are necessary to give a more exact evaluation for this divergent assemblage. According to our new understandings, five forms are confirmed to be true Metaurostylopsis. The morphotype Metaurostylopsis sinica Shao et al., 2008 should be excluded from the genus and represents a distinct type, and, thus, a new genus Apourostylopsis n. g. with it as the type specie, i.e. Apourostylopsis sinica (Shao et al., 2008) n. comb.  相似文献   

19.
The phylogeny of the Synurophyceae was investigated by parsimony analysis of scale case characters and small-sub unit (18S) ribosomal RNA (rRNA) sequence data. Analysis of 1 eustigmatophycean (outgroup), 3 chrysophycean, and 10 synurophycean 18S rRNA sequences corroborated the inference from ultrastructural information that the Synurophyceae is a monophyletic assemblage . Tessellaria vol-vocina, which had been tentatively proposed as a member of the Synurophyceae, was confirmed as the earliest lineage within the Synurophyceae by both the molecular analysis and an evaluation of published ultrastructural data. A second set of analyses investigated the relationships among Tessellaria volvocina, 6 Synura species, and 10 Mallomonas species/varieties, with particular reference to the validity of current classifications of the Synurophyceae and the characters upon which they are based. The molecular and scale case phylogenies were not totally resolved but were largely congruent. The data sets were combined to produce another phylogeny, which showed greater resolution. The combined phylogeny weakly supported our representatives of Synura and Mallomonas as monophyletic groupings and also upheld several of the sections within these genera that are recognized by current classifications. However, some changes to the classification and delineation of these genera are recommended and predicted. Both our 18S rRNA sequence and scale case data sets were more appropriate for examining the branching order among the more closely related text rather than resolving the deeper branching points of the synurophycean phylogeny .  相似文献   

20.
The phylogenetic position of gnetophytes has long been controversial. We sequenced parts of the genes coding for the largest subunit of nuclear RNA polymerase I, II, and III and combined these sequences with those of four chloroplast genes, two mitochondrial genes, and 18S rRNA genes to address this issue. Both maximum likelihood and maximum parsimony analyses of the sites not affected by high substitution levels strongly support a phylogeny where gymnosperms and angiosperms are monophyletic, where cycads are at the base of gymnosperm tree and are followed by ginkgos, and where gnetophytes are grouped within conifers as the sister group of pines. The evolution of several morphological and molecular characters of gnetophytes and conifers will therefore need to be reinterpreted.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号