首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multilocus sequence typing scheme for bacteria of the Bacillus cereus group   总被引:3,自引:0,他引:3  
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.  相似文献   

2.
The Bacillus cereus group represents sporulating soil bacteria containing pathogenic strains which may cause diarrheic or emetic food poisoning outbreaks. Multiple locus sequence typing revealed a presence in natural samples of these bacteria of about 30 clonal complexes. Application of genomic methods to this group was however biased due to the major interest for representatives closely related to Bacillus anthracis. Albeit the most important food-borne pathogens were not yet defined, existing data indicate that they are scattered all over the phylogenetic tree. The preliminary analysis of the sequences of three genomes discussed in this paper narrows down the gaps in our knowledge of the B. cereus group. The strain NVH391-98 is a rare but particularly severe food-borne pathogen. Sequencing revealed that the strain should be a representative of a novel bacterial species, for which the name Bacillus cytotoxis or Bacillus cytotoxicus is proposed. This strain has a reduced genome size compared to other B. cereus group strains. Genome analysis revealed absence of sigma B factor and the presence of genes encoding diarrheic Nhe toxin, not detected earlier. The strain B. cereus F837/76 represents a clonal complex close to that of B. anthracis. Including F837/76, three such B. cereus strains had been sequenced. Alignment of genomes suggests that B. anthracis is their common ancestor. Since such strains often emerge from clinical cases, they merit a special attention. The third strain, KBAB4, is a typical facultative psychrophile generally found in soil. Phylogenic studies show that in nature it is the most active group in terms of gene exchange. Genomic sequence revealed high presence of extra-chromosomal genetic material (about 530kb) that may account for this phenomenon. Genes coding Nhe-like toxin were found on a big plasmid in this strain. This may indicate a potential mechanism of toxicity spread from the psychrophile strain community. The results of this genomic work and ecological compartments of different strains incite to consider a necessity of creating prophylactic vaccines against bacteria closely related to NVH391-98 and F837/76. Presumably developing of such vaccines can be based on the properties of non-pathogenic strains such as KBAB4 or ATCC14579 reported here or earlier. By comparing the protein coding genes of strains being sequenced in this project to others we estimate the shared proteome, or core genome, in the B. cereus group to be 3000+/-200 genes and the total proteome, or pan-genome, to be 20-25,000 genes.  相似文献   

3.
We used multilocus sequence typing (MLST) to characterize phylogenetic relationships for a collection of Bacillus cereus group strains isolated from forest soil in the Paris area during a mild winter. This collection contains multiple strains isolated from the same soil sample and strains isolated from samples from different sites. We characterized 115 strains of this collection and 19 other strains based on the sequences of the clpC, dinB, gdpD, panC, purF, and yhfL loci. The number of alleles ranged from 36 to 53, and a total of 93 allelic profiles or sequence types were distinguished. We identified three major strain clusters-C, T, and W-based on the comparison of individual gene sequences or concatenated sequences. Some less representative clusters and subclusters were also distinguished. Analysis of the MLST data using the concept of clonal complexes led to the identification of two, five, and three such groups in clusters C, T, and W, respectively. Some of the forest isolates were closely related to independently isolated psychrotrophic strains. Systematic testing of the strains of this collection showed that almost all the strains that were able to grow at a low temperature (6 degrees C) belonged to cluster W. Most of these strains, including three independently isolated strains, belong to two clonal complexes and are therefore very closely related genetically. These clonal complexes represent strains corresponding to the previously identified species Bacillus weihenstephanensis. Most of the other strains of our collection, including some from the W cluster, are not psychrotrophic. B. weihenstephanensis (cluster W) strains appear to comprise an effectively sexual population, whereas Bacillus thuringiensis (cluster T) and B. cereus (cluster C) have clonal population structures.  相似文献   

4.
In this study we developed a multilocus sequence typing (MLST) scheme for bacteria of the Bacillus cereus group. This group, which includes the species B. cereus, B. thuringiensis, B. weihenstephanensis, and B. anthracis, is known to be genetically very diverse. It is also very important because it comprises pathogenic organisms as well as bacteria with industrial applications. The MLST system was established by using 77 strains having various origins, including humans, animals, food, and soil. A total of 67 of these strains had been analyzed previously by multilocus enzyme electrophoresis, and they were selected to represent the genetic diversity of this group of bacteria. Primers were designed for conserved regions of housekeeping genes, and 330- to 504-bp internal fragments of seven such genes, adk, ccpA, ftsA, glpT, pyrE, recF, and sucC, were sequenced for all strains. The number of alleles at individual loci ranged from 25 to 40, and a total of 53 allelic profiles or sequence types (STs) were distinguished. Analysis of the sequence data showed that the population structure of the B. cereus group is weakly clonal. In particular, all five B. anthracis isolates analyzed had the same ST. The MLST scheme which we developed has a high level of resolution and should be an excellent tool for studying the population structure and epidemiology of the B. cereus group.  相似文献   

5.
Many short (<400 bp) interspersed sequence repeats exist in bacteria, yet little is known about their origins, mode of generation, or possible function. Here, we present a comprehensive analysis of 18 different previously identified repeated DNA elements, bcr1-bcr18 (?kstad OA, Hegna I, Lindback T, Rishovd AL, Kolst? AB. 1999. Genome organization is not conserved between Bacillus cereus and Bacillus subtilis. Microbiology. 145:621-631.; Tourasse NJ, Helgason E, ?kstad OA, Hegna IK, Kolst? AB. 2006. The Bacillus cereus group: novel aspects of population structure and genome dynamics. J Appl Microbiol. 101:579-593.), in 36 sequenced genomes from the Bacillus cereus group of bacteria. This group consists of genetically closely related species with variable pathogenic specificity toward different hosts and includes among others B. anthracis, B. cereus, and B. thuringiensis. The B. cereus group repeat elements could be classified into three categories with different properties: Group A elements (bcr1-bcr3) exhibited highly variable copy numbers ranging from 4 to 116 copies per strain, showed a nonconserved chromosomal distribution pattern between strains, and displayed several features characteristic of mobile elements. Group B repeats (bcr4-bcr6) were present in 0-10 copies per strain and were associated with strain-specific genes and disruptions of genome synteny, implying a possible contribution to genome rearrangements and/or horizontal gene transfer events. bcr5, in particular, was associated with large gene clusters showing resemblance to integrons. In agreement with their potentially mobile nature or involvement in horizontal transfers, the sequences of the repeats from Groups A and B (bcr1-bcr6) followed a phylogeny different from that of the host strains. Conversely, repeats from Group C (bcr7-bcr18) had a conserved chromosomal location and orthologous gene neighbors in the investigated B. cereus group genomes, and their phylogeny matched that of the host chromosome. Several of the group C repeats exhibited a conserved secondary structure or had parts of the structure conserved, possibly indicating functional RNAs. Accordingly, five of the repeats in group C overlapped regions encoding previously characterized riboswitches. Similarly, other group C repeats could represent novel riboswitches, encode small RNAs, and/or constitute other types of regulatory elements with specific biological functions. The current analysis suggests that the multitude of repeat elements identified in the B. cereus group promote genome dynamics and plasticity and could contribute to the flexible and adaptive life style of these bacteria.  相似文献   

6.
Bacillus cereus strains ATCC 10987 and ATCC 14579 harbor an approximately 155-bp repeated element, bcr1, which is conserved in B. cereus, B. anthracis, B. thuringiensis, and B. mycoides but not in B. subtilis and B. licheniformis. In this study, we show by Southern blot hybridizations that bcr1 is present in all 54 B. cereus group strains tested but absent in 11 Bacillus strains outside the group, suggesting that bcr1 may be specific and ubiquitous to the B. cereus group. By comparative analysis of the complete genome sequences of B. cereus ATCC 10987, B. cereus ATCC 14579, and B. anthracis Ames, we show that bcr1 is exclusively present in the chromosome but absent from large plasmids carried by these strains and that the numbers of full-length bcr1 repeats for these strains are 79, 54, and 12, respectively. Numerous copies of partial bcr1 elements are also present in the three genomes (91, 128, and 53, respectively). Furthermore, the genomic localization of bcr1 is not conserved between strains with respect to chromosomal position or organization of gene neighbors, as only six full-length bcr1 loci are common to at least two of the three strains. However, the intergenic sequence surrounding a specific bcr1 repeat in one of the three strains is generally strongly conserved in the other two, even in loci where bcr1 is found exclusively in one strain. This finding indicates that bcr1 either has evolved by differential deletion from a very high number of repeats in a common ancestor to the B. cereus group or is moving around the chromosome. The identification of bcr1 repeats interrupting genes in B. cereus ATCC 10987 and ATCC 14579 and the presence of a flanking TTTAT motif in each end show that bcr1 exhibits features characteristic of a mobile element.  相似文献   

7.
Genotyping of Bacillus cereus strains by microarray-based resequencing   总被引:1,自引:0,他引:1  
The ability to distinguish microbial pathogens from closely related but nonpathogenic strains is key to understanding the population biology of these organisms. In this regard, Bacillus anthracis, the bacterium that causes inhalational anthrax, is of interest because it is closely related and often difficult to distinguish from other members of the B. cereus group that can cause diverse diseases. We employed custom-designed resequencing arrays (RAs) based on the genome sequence of Bacillus anthracis to generate 422 kb of genomic sequence from a panel of 41 Bacillus cereus sensu lato strains. Here we show that RAs represent a "one reaction" genotyping technology with the ability to discriminate between highly similar B. anthracis isolates and more divergent strains of the B. cereus s.l. Clade 1. Our data show that RAs can be an efficient genotyping technology for pre-screening the genetic diversity of large strain collections to selected the best candidates for whole genome sequencing.  相似文献   

8.

Background

The population structure and diversity of Lactococcus lactis subsp. lactis, a major industrial bacterium involved in milk fermentation, was determined at both gene and genome level. Seventy-six lactococcal isolates of various origins were studied by different genotyping methods and thirty-six strains displaying unique macrorestriction fingerprints were analyzed by a new multilocus sequence typing (MLST) scheme. This gene-based analysis was compared to genomic characteristics determined by pulsed-field gel electrophoresis (PFGE).

Methodology/Principal Findings

The MLST analysis revealed that L. lactis subsp. lactis is essentially clonal with infrequent intra- and intergenic recombination; also, despite its taxonomical classification as a subspecies, it displays a genetic diversity as substantial as that within several other bacterial species. Genome-based analysis revealed a genome size variability of 20%, a value typical of bacteria inhabiting different ecological niches, and that suggests a large pan-genome for this subspecies. However, the genomic characteristics (macrorestriction pattern, genome or chromosome size, plasmid content) did not correlate to the MLST-based phylogeny, with strains from the same sequence type (ST) differing by up to 230 kb in genome size.

Conclusion/Significance

The gene-based phylogeny was not fully consistent with the traditional classification into dairy and non-dairy strains but supported a new classification based on ecological separation between “environmental” strains, the main contributors to the genetic diversity within the subspecies, and “domesticated” strains, subject to recent genetic bottlenecks. Comparison between gene- and genome-based analyses revealed little relationship between core and dispensable genome phylogenies, indicating that clonal diversification and phenotypic variability of the “domesticated” strains essentially arose through substantial genomic flux within the dispensable genome.  相似文献   

9.
Although the major food-borne pathogen Campylobacter jejuni has been isolated from diverse animal, human and environmental sources, our knowledge of genomic diversity in C. jejuni is based exclusively on human or human food-chain-associated isolates. Studies employing multilocus sequence typing have indicated that some clonal complexes are more commonly associated with particular sources. Using comparative genomic hybridization on a collection of 80 isolates representing diverse sources and clonal complexes, we identified a separate clade comprising a group of water/wildlife isolates of C. jejuni with multilocus sequence types uncharacteristic of human food-chain-associated isolates. By genome sequencing one representative of this diverse group (C. jejuni 1336), and a representative of the bank-vole niche specialist ST-3704 (C. jejuni 414), we identified deletions of genomic regions normally carried by human food-chain-associated C. jejuni. Several of the deleted regions included genes implicated in chicken colonization or in virulence. Novel genomic insertions contributing to the accessory genomes of strains 1336 and 414 were identified. Comparative analysis using PCR assays indicated that novel regions were common but not ubiquitous among the water/wildlife group of isolates, indicating further genomic diversity among this group, whereas all ST-3704 isolates carried the same novel accessory regions. While strain 1336 was able to colonize chicks, strain 414 was not, suggesting that regions specifically absent from the genome of strain 414 may play an important role in this common route of Campylobacter infection of humans. We suggest that the genomic divergence observed constitutes evidence of adaptation leading to niche specialization.  相似文献   

10.
Vibrio parahaemolyticus is an important human pathogen whose transmission is associated with the consumption of contaminated seafood. There is a growing public health concern due to the emergence of a pandemic strain causing severe outbreaks worldwide. Many questions remain unanswered regarding the evolution and population structure of V. parahaemolyticus. In this work, we describe a multilocus sequence typing (MLST) scheme for V. parahaemolyticus based on the internal fragment sequences of seven housekeeping genes. This MLST scheme was applied to 100 V. parahaemolyticus strains isolated from geographically diverse clinical (n = 37) and environmental (n = 63) sources. The sequences obtained from this work were deposited and are available in a public database (http://pubmlst.org/vparahaemolyticus). Sixty-two unique sequence types were identified, and most (50) were represented by a single isolate, suggesting a high level of genetic diversity. Three major clonal complexes were identified by eBURST analysis. Separate clonal complexes were observed for V. parahaemolyticus isolates originating from the Pacific and Gulf coasts of the United States, while a third clonal complex consisted of strains belonging to the pandemic clonal complex with worldwide distribution. The data reported in this study indicate that V. parahaemolyticus is genetically diverse with a semiclonal population structure and an epidemic structure similar to that of Vibrio cholerae. Genetic diversity in V. parahaemolyticus appears to be driven primarily by frequent recombination rather than mutation, with recombination ratios estimated at 2.5:1 and 8.8:1 by allele and site, respectively. Application of this MLST scheme to more V. parahaemolyticus strains and by different laboratories will facilitate production of a global picture of the epidemiology and evolution of this pathogen.  相似文献   

11.
AIMS: To assess suitability of Multi Locus Sequence Typing (MLST) for investigating the biodiversity of wine yeast strains. This method was compared with established ones like microsatellite analysis or amplification of genomic regions flanked by repeated (delta) elements. METHODS AND RESULTS: DNA fragments were amplified and sequenced for 26 loci representing housekeeping genes, open reading frames (ORFs) of unknown functions or intergenic regions. A set of seven loci was tested on 84 Saccharomyces cerevisiae strains, including 65 strains isolated from traditional wineries in Lebanon, commercial wine strains and Asian isolates. An overall sequence diversity of 2.05% was observed, consisting of single nucleotide polymorphisms, 60% of them occurring in a heterozygous state. The number of polymorphic sites per locus varied between 4 and 14. The same set of strains was analysed by microsatellite typing on six polymorphic loci and by interdelta amplification. CONCLUSIONS: Clustering of MLST profiles clearly differentiated the Asian group of strains from Lebanese and European commercial strains that appear closely related. The current MLST scheme appears less discriminatory (92.27%) on closely related wine yeasts than microsatellite or interdelta typing (>99%). SIGNIFICANCE AND IMPACT OF THE STUDY: MLST is a highly reliable method for relatedness inference and promising for wine yeast typing.  相似文献   

12.
Three species of the Bacillus cereus group (Bacillus cereus, Bacillus anthracis, and Bacillus thuringiensis) have a marked impact on human activity. Bacillus cereus and B. anthracis are important pathogens of mammals, including humans, and B. thuringiensis is extensively used in the biological control of insects. The microbiological, biochemical, and genetic characteristics of these three species are reviewed, together with a discussion of several genomic studies conducted on strains of B. cereus group. Using bacterial systematic concepts, we speculate that to understand the taxonomic relationship within this group of bacteria, special attention should be devoted also to the ecology and the population genetics of these species.  相似文献   

13.
Eight strains of Bacillus cereus isolated from bacteremia and soft tissue infections were assigned to seven sequence types (STs) by multilocus sequence typing (MLST). Two strains from different locations had identical STs. The concatenated sequences of the seven STs were aligned with 65 concatenated sequences from reference STs and a neighbor-joining tree was constructed. Two strains were distantly related to all reference STs. Three strains were recovered in a clade that included Bacillus anthracis, B. cereus and rare Bacillus thuringiensis strains while the other three strains were assigned to two STs that were more closely affiliated to most of the B. thuringiensis STs. We conclude that invasive B. cereus strains do not form a single clone or clonal complex of highly virulent strains.  相似文献   

14.
Little is known about genetic exchanges in natural populations of bacteria of the spore-forming Bacillus cereus group, because no population genetics studies have been performed with local sympatric populations. We isolated strains of Bacillus thuringiensis and B. cereus from small samples of soil collected at the same time from two separate geographical sites, one within the forest and the other at the edge of the forest. A total of 100 B. cereus and 98 B. thuringiensis strains were isolated and characterized by electrophoresis to determine allelic composition at nine enzymatic loci. We observed genetic differentiation between populations of B. cereus and B. thuringiensis. Populations of a given Bacillus species--B. thuringiensis or B. cereus--were genetically more similar to each other than to populations of the other Bacillus species. Hemolytic activity provided further evidence of this genetic divergence, which remained evident even if putative clones were removed from the data set. Our results suggest that the rate of gene flow was higher between strains of the same species, but that exchanges between B. cereus and B. thuringiensis were nonetheless possible. Linkage disequilibrium analysis revealed sufficient recombination for B. cereus populations to be considered panmictic units. In B. thuringiensis, the balance between clonal proliferation and recombination seemed to depend on location. Overall, our data indicate that it is not important for risk assessment purposes to determine whether B. cereus and B. thuringiensis belong to a single or two species. Assessment of the biosafety of pest control based on B. thuringiensis requires evaluation of the extent of genetic exchange between strains in realistic natural conditions.  相似文献   

15.
AIMS: To evaluate the genetic relationship in the Bacillus cereus group by rep-PCR fingerprinting. METHODS AND RESULTS: A collection of 112 strains of the six species of the B. cereus group was analysed by rep-PCR fingerprinting using the BOX-A1R primer. A relative genetic distinctness was found among the species. Cluster analysis of the rep-PCR patterns showed clusters of B. thuringiensis strains quite separate from those of B. cereus strains. The B. anthracis strains represented an independent lineage in a B. cereus cluster. The B. mycoides, B. pseudomycoides and B. weihenstephanensis strains were clustered into three groups at some distance from the other species. Comparison of sequences of AC-390, a typical B. anthracis rep-PCR fragment, from 27 strains of B. anthracis, B. cereus, B. thuringiensis and B. weihenstephanensis, representative of different clusters identified by rep-PCR fingerprinting, confirmed that B. anthracis diverges from its related species. CONCLUSIONS: The genetic relationship deduced from the rep-PCR patterns indicates a relatively clear separation of the six species, suggesting that they can indeed be considered as separate units. SIGNIFICANCE AND IMPACT OF THE STUDY: rep-PCR fingerprinting can make a contribution in the clarification of the genetic relationships between the species of the B. cereus group.  相似文献   

16.
The genetic diversity of Campylobacter jejuni isolates from farm animals and their environment was investigated by multilocus sequence typing (MLST). A total of 30 genotypes, defined by allelic profiles (assigned to sequence types [STs]), were found in 112 C. jejuni isolates originating in poultry, cattle, sheep, starlings, and slurry. All but two of these genotypes belonged to one of nine C. jejuni clonal complexes previously identified in isolates from human disease and retail food samples and one clonal complex previously associated with an environmental source. There was some evidence for the association of certain clonal complexes with particular farm animals: isolates belonging to the ST-45 complex predominated among poultry isolates but were absent among sheep isolates, while isolates belonging to the ST-61 and ST-42 complexes were predominant among sheep isolates but were absent from the poultry isolates. In contrast, ST-21 complex isolates were distributed among the different isolation sources. Comparison with MLST data from 91 human disease isolates showed small but significant genetic differentiation between the farm and human isolates; however, representatives of six clonal complexes were found in both samples. These data demonstrate that MLST and the clonal complex model can be used to identify and compare the genotypes of C. jejuni isolates from farm animals and the environment with those from retail food and human disease.  相似文献   

17.
Xie Y  He Y  Gehring A  Hu Y  Li Q  Tu SI  Shi X 《PloS one》2011,6(12):e28276
A total of 108 S. aureus isolates from 16 major hospitals located in 14 different provinces in China were characterized for the profiles of 18 staphylococcal enterotoxin (SE) genes, 3 exfoliatin genes (eta, etb and etd), and the toxic shock syndrome toxin gene (tsst) by PCR. The genomic diversity of each isolate was also evaluated by pulsed-field gel electrophoresis (PFGE), multilocus sequence typing (MLST), and accessory gene regulator (agr) typing. Of these strains, 90.7% (98/108) harbored toxin genes, in which tsst was the most prevalent toxin gene (48.1%), followed by sea (44.4%), sek (42.6%) and seq (40.7%). The see and etb genes were not found in any of the isolates tested. Because of high-frequency transfer of toxin gene-containing mobile genetic elements between S. aureus strains, a total of 47 different toxin gene combinations were detected, including a complete egc cluster in 19 isolates, co-occurrence of sea, sek and seq in 38 strains, and sec and sel together in 11 strains. Genetic typing by PFGE grouped all the strains into 25 clusters based on 80% similarity. MLST revealed 25 sequence types (ST) which were assigned into 16 clonal complexes (CCs) including 2 new singletons. Among these, 11 new and 6 known STs were first reported in the S. aureus strains from China. Overall, the genotyping results showed high genetic diversity of the strains regardless of their geographical distributions, and no strong correlation between genetic background and toxin genotypes of the strains. For genotyping S. aureus, PFGE appears to be more discriminatory than MLST. However, toxin gene typing combined with PFGE or MLST could increase the discriminatory power of genotyping S. aureus strains.  相似文献   

18.
Yersinia ruckeri is the causative agent of enteric redmouth in fish and one of the major bacterial pathogens causing losses in salmonid aquaculture. Previously typing methods, including restriction enzyme analysis, pulsed-field gel electrophoresis and multilocus enzyme electrophoresis (MLEE) have indicated a clonal population structure. In this work, we describe a multilocus sequence typing (MLST) scheme for Y.ruckeri based on the internal fragment sequence of six housekeeping genes. This MLST scheme was applied to 103 Y.ruckeri strains from diverse geographic areas and hosts as well as environmental sources. Sequences obtained from this work were deposited and are available in a public database (http://publmst.org/yruckeri/). Thirty different sequence types (ST) were identified, 21 of which were represented by a single isolate, evidencing high genetic diversity. ST2 comprised more than one-third of the isolates and was most frequently observed among isolates from trout. Two major clonal complexes (CC) were identified by eBURST analysis showing a common evolutionary origin for 94 isolates forming 21 STs into CC1 and for 6 isolates of 6 STs in the CC2. It was also possible to associate some unique ST with isolates from recent outbreaks in vaccinated salmonid fish.  相似文献   

19.
Multiple locus sequence typing (MLST) was undertaken to extend the genetic characterization of 29 isolates of Bacillus cereus and Bacillus thuringiensis previously characterized in terms of presence/absence of sequences encoding virulence factors and via variable number tandem repeat (VNTR). Additional analysis involved polymerase chain reaction for the presence of sequences (be, cytK, inA, pag, lef, cya and cap), encoding putative virulence factors, not investigated in the earlier study. MLST analysis ascribed novel and unique sequence types to each of the isolates. A phylogenetic tree was constructed from a single sequence of 2,838 bp of concatenated loci sequences. The strains were not monophyletic by analysis of any specific housekeeping gene or virulence characteristic. No clear association in relation to source of isolation or to genotypic profile based on the presence or absence of putative virulence genes could be identified. Comparison of VNTR profiling with MLST data suggested a correlation between these two methods of genetic analysis. In common with the majority of previous studies, MLST was unable to provide clarification of the basis for pathogenicity among members of the B. cereus complex. Nevertheless, our application of MLST served to reinforce the notion that B. cereus and B. thuringiensis should be considered as the same species.  相似文献   

20.
Studies of the genetic diversity and population structure of Oenococcus oeni (O. oeni) strains from China are lacking compared to other countries and regions. In this study, amplified fragment length polymorphism (AFLP) and multilocus sequence typing (MLST) methods were used to investigate the genetic diversity and regional evolutionary patterns of 38 O. oeni strains isolated from different wine-making regions in China. The results indicated that AFLP was markedly more efficient than MLST for typing O. oeni strains. AFLP distinguished 37 DNA patterns compared to 7 sequence types identified using MLST, corresponding to discriminatory indices of 0.999 and 0.602, respectively. The AFLP results revealed a high level of genetic diversity among the O. oeni strains from different regions of China, since two subpopulations and an intraspecific homology higher than 60% were observed. Phylogenetic analysis of the O. oeni strains using the MLST method also identified two major phylogroups, which were differentiated into two distinct clonal complexes by minimum spanning tree analysis. Neither intragenic nor intergenic recombination verified the existence of the clonal population structure of the O. oeni strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号