首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cynomolgus monkeys, rhesus monkeys and baboons were administered 10 to 40 times the human dose equivalent of Bendectin throughout the major period of organogenesis (22(+/-3)-50 days of gestation). In animals examined prenatally (100 +/- 2 days gestation) the total incidence of ventricular septal defects (VSD) was 40% in cynomolgus monkeys, 18% in rhesus monkeys, and 23% in baboons. The majority of VSD involved the muscular portion of the septum. No dose response was evident and there were no other cardiac or extracardiac defects found except for one baboon fetus with multiple defects. No defects were observed in cynomolgus monkeys administered Bendectin for 4-day periods between 22 and 41 days of gestation. There was no association of Bendectin treatment with any noncardiac defect. In cynomolgus and rhesus monkeys examined at term there was one mitral valve defect and no incidence of VSD. The increased incidence of VSD observed prenatally in all three species and the absence of defects in macaques at term suggests a delay in closure of the ventricular septum in treated animals. The Bendectin-treated monkey may be a suitable model for the study of the pathogenesis of VSD and the mechanism of spontaneous closure of the defect.  相似文献   

2.
Bendectin, composed of doxylamine succinate and pyridoxine HCl (1:1), is an antinauseant previously prescribed for nausea and vomiting during pregnancy. The present study examined the maternal and developmental effects of Bendectin (0, 200, 500, or 800 mg/kg/day, po) administered to timed-pregnant CD rats (36-41/group) during organogenesis (gestational days [gd] 6-15). At death (gd 20), all live fetuses were examined for external, visceral, and skeletal abnormalities. At 500 and 800 mg/kg/day, maternal toxicity included reduced food consumption during treatment and for the gestation period, increased water consumption in the posttreatment period, reduced weight gain during treatment, and sedation; water consumption was reduced during treatment and for the gestation period, and maternal mortality (17.1%) was observed only at the high dose. Developmental toxicity included reduced prenatal viability (800 mg/kg/day) and reduced fetal body weight/litter (500 and 800 mg/kg/day). In addition, reduced ossification of metacarpals (800 mg/kg/day), phalanges of the forelimbs (500 and 800 mg/kg/day), and of caudal vertebral centra (all doses) was observed. No increase in percent malformed live fetuses/litter was observed. The proportion of litters with one or more malformed fetuses was higher than vehicle controls only at 800 mg/kg/day, with short 13th rib (to which the test species is predisposed) as the predominant observation. By contrast, a positive control agent (nitrofen, 50 mg/kg/day, po, 14 dams) produced 85% malformed fetuses/litter with the predominant malformation being diaphragmatic hernia. In conclusion, the incidence of litters with one or more malformed fetuses was increased only at a dose of Bendectin which produced maternal mortality (17.1%) and other indices of maternal and developmental toxicity (see Discussion).  相似文献   

3.
Norfloxacin, a new orally active antibiotic, was investigated in cynomolgus monkeys for potential developmental toxicity. Fifty-seven monkeys were administered a control vehicle or norfloxacin by nasogastric gavage during the major period of organogenesis on gestational days (GD) 21 through 50 at doses of 0, 50, 100, 150, or 200/300 mg/kg/day. There was no evidence of teratogenicity at any dose level. Maternotoxicity and a significant increase in embryolethality occurred following doses of 200/300 mg/kg/day. The maternotoxicity was not expected based on range-finding studies in nonpregnant female monkeys, which showed no signs of toxicity in doses up to 500 mg/kg/day. Additional studies were conducted to determine if norfloxacin caused similar toxicity later in gestation. Forty-six pregnant monkeys were dosed with a control vehicle or 200 mg/kg/day norfloxacin for one of three 10-day periods on GD 36-45, 71-80, or 111-120. There were no maternotoxic, embryotoxic, or fetotoxic effects observed. Plasma concentrations of norfloxacin in five cynomolgus monkeys following 50 and 200 mg/kg oral doses were not dose-proportionate. However, at a given dose, administered in cross-over fashion, plasma concentrations of norfloxacin were higher in nonpregnant females (approximately 20-40%) than during pregnancy when the same subject was compared. At the no-observed-effect dose for maternal and embryotoxicity (50 mg/kg), peak plasma concentrations of norfloxacin in pregnant cynomolgus monkeys are approximately threefold higher than those observed in human volunteers receiving norfloxacin at the maximum recommended therapeutic dose of 400 mg (5.7 mg/kg based on 70 kg body weight) twice per day.  相似文献   

4.
The relationship between Bendectin exposure during the first trimester of pregnancy and the occurrence of congenital malformations was prospectively studied in 31,564 newborns registered in the Northern California Kaiser Permanente Birth Defects Study. The odds ratio for any major malformation and Bendectin use was 1.0 (95% confidence interval 0.8-1.4). There were 58 categories of congenital malformations; three of them were statistically associated with Bendectin exposure (microcephaly--odds ratio = 5.3, 95% confidence interval = 1.8-15.6; congenital cataract--odds ratio = 5.3, 95% confidence interval = 1.2-24.3; lung malformations (ICD-8 codes 484.4-484.8)--odds ratio = 4.6, 95% confidence interval = 1.9-10.9). This is exactly the number of associations that would be expected by chance. An independent study (the Collaborative Perinatal Project) was used to determine whether vomiting during pregnancy in the absence of Bendectin use was associated with these three malformations. Two of the three (microcephaly and cataract) had strong positive associations with vomiting in the absence of Bendectin use. We conclude that there is no increase in the overall rate of major malformations after exposure to Bendectin and that the three associations found between Bendectin and individual malformations are unlikely to be causal.  相似文献   

5.
The role of maternal toxicity in lovastatin-induced developmental toxicity in rats was examined in a series of studies. The first study administered lovastatin at 100, 200, 400, or 800 mg/kg/day (mkd) orally to mated rats from Gestation Day (GD) 6 through 20. Maternal toxicity was observed as transient dose-related body weight losses at the initiation of dosing; there were also deaths and/or morbidity at 400 and 800 mkd. These toxicities occurred in conjunction with forestomach lesions. Mean fetal weights were decreased in all groups (-5 to -16%), and the incidence of skeletal malformations, variations, and incomplete ossifications was increased. The 2 highest doses produced the most severe maternal and developmental effects. Using the same dosages, the second study avoided gestational maternal weight losses and morbidity by starting treatment 14 days before mating with dosing continued to GD 20. There were transient dose-related body weight losses after the start of dosing and deaths in the 400- and 800-mkd groups; however, there was no evidence of maternal toxicity during gestation. Developmental toxicity was evident only as slight, but generally significant (p< or =0.05) decreases in mean fetal weights in groups given > or =200 mkd (-2 to -5%). Significantly, no skeletal abnormalities were observed. A third study administered the pharmacologically active metabolite of lovastatin subcutaneously at dose levels that matched oral maternal drug exposures. In the high-dose group, maternal weight gain and mean fetal weight were slightly decreased but there were no treatment-related skeletal abnormalities. Finally, a series of toxicokinetic studies assessed whether the 2 different developmental toxicity profiles were due to differences in drug exposure between the developmentally toxic and non-toxic dosing regimes. The data showed that groups with no skeletal abnormalities had maternal and embryonic/fetal drug concentrations similar to or even greater than the groups with fetal abnormalities. These results indicate that fetal skeletal abnormalities observed at lovastatin dose levels > or =100 mkd are not due to a direct teratogenic effect, but are the result of excessive maternal toxicity, which most likely involves a nutritional deficiency associated with forestomach lesions and reduced maternal food intake.  相似文献   

6.
The embryotoxic and teratogenic potential of 13-cis retinoic acid was assessed in the cynomolgus macaque (Macaca fascicularis). A total of 41 animals was orally administered 13-cis retinoic acid in four sequential experiments. In Exp. 1 three dose levels, 2, 10, and 25 mg/kg, were administered on gestational day (GD) 18-28; 5 mg/kg was administered as an equally divided dose twice daily in Exp. 2 and 3 on GD 21-24 and on GD 25-27, respectively; in Exp. 4 the drug was administered at 2.5 mg/kg once daily from GD 10 to 25 and twice daily (2 x 2.5 mg/kg) on GD 26 and 27. Maternal death and toxicity, manifested as reduction in maternal weight and food consumption, and diarrhea, was observed in Exp. 1 in all three dose groups. No significant maternal toxicity was observed in the treatment groups in Exp. 2, 3, and 4 or in the control group. The primary manifestation of developmental toxicity was embryolethality in Exp. 1 and 2. The incidence of embryonic deaths in Exp. 3 was comparable to the historical controls. No malformations in GD 100 fetuses were observed in Exp. 1, 2, and 3. In Exp. 4, five of seven fetuses (71%) had malformations of both external ears, four of seven fetuses (57%) exhibited hypo- or aplasia of the thymus, and two of seven (29%) had malformations (transposition of the great vessels, ventricular septal defect) of the heart. The teratogenic dose for the cynomolgus monkey in the present study was lower than that reported for all other experimental species. Although central nervous system and craniofacial defects were not observed, the incidence of ear and thymus defects was similar to that reported for the human. The cardiovascular defects resembled those reported clinically, but the incidence was lower in the cynomolgus monkey. The similarity in teratogenic sensitivity to humans supports the use of the monkey as a model for developmental toxicity studies of vitamin A-related compounds.  相似文献   

7.
Tabalumab, a human IgG4 monoclonal antibody (mAb) with neutralizing activity against both soluble and membrane B‐cell activating factor (BAFF), has been under development for the treatment of autoimmune diseases. The purpose of this study was to determine the potential adverse effects of maternal tabalumab exposure on pregnancy, parturition, and lactation of the mothers and on the growth, viability, and development of the offspring through postnatal day (PND) 204. Tabalumab was administered by subcutaneous injection to presumed pregnant cynomolgus monkeys (16–19 per group) every 2 weeks from gestation day (GD) 20 to 22 until parturition at doses of 0, 0.3, or 30 mg/kg. Evaluations in mothers and infants included clinical signs, body weight, toxicokinetics, blood lymphocyte phenotyping, T‐cell‐dependent antibody response (infants only), antitherapeutic antibody (ATA), organ weights (infants only), and gross and microscopic histopathology. Infants were also examined for external and visceral morphologic and neurobehavioral development. There were no adverse tabalumab‐related effects on maternal or infant endpoints. An expected pharmacological decrease in peripheral blood B‐lymphocytes occurred in adults and infants; however, B‐cell recovery was evident by PND154 in adults and infants at 0.3 mg/kg and by PND204 in infants at 30 mg/kg. At 30 mg/kg, a reduced IgM antibody response to T‐cell‐dependent antigen keyhole limpet hemocyanin (KLH) was observed following primary immunization. Following secondary KLH immunization, all infants in both dose groups mounted anti‐KLH IgM and IgG antibody responses similar to control. Placental and mammary transfer of tabalumab was demonstrated. In conclusion, the no‐observed‐adverse‐effect level for maternal and developmental toxicity was 30 mg/kg, the highest dose tested. Exposures at 30 mg/kg provide a margin of safety of 16× the anticipated clinical exposure.  相似文献   

8.
J C Kim  H C Shin  S W Cha  W S Koh  M K Chung  S S Han 《Life sciences》2001,69(22):2611-2625
Bisphenol A (BPA) is an essential component of epoxy resins used in the lacquer lining of metal food cans, as a component of polycarbonates, and in dental sealants. The present study was conducted in an attempt to evaluate the adverse effects of the environmental estrogen BPA on initiation and maintenance of pregnancy and embryofetal development after maternal exposure during the entire period of pregnancy in Sprague-Dawley rats. The test chemical was administered by gavage to mated females from days 1 to 20 of gestation (sperm in varginal lavage = day 0) at dose levels of 0, 100, 300, and 1000 mg/kg. All females were subjected to caesarean section on day 21 of gestation and their fetuses were examined for external, visceral and skeletal abnormalities. In the 1000 mg/kg group, significant toxic effects including abnormal clinical signs, decreased maternal body weight and body weight gain, and reduced food consumption were observed in pregnant rats. An increase in pregnancy failure was also found in the successfully mated females. In addition, increased number of embryonal deaths, increased postimplantation loss, reduced litter size and fetal body weight, and decreased number of fetal ossification centers of several skeletal districts were seen. On the contrary, no significant changes induced by BPA were detected in the number of corpora lutea and implantation sites and by fetal morphological examinations. In the 300 mg/kg group, suppressed maternal body weight and body weight gain, decreased food intake and reduced body weight of male fetuses were seen. There were no adverse signs of either maternal toxicity or developmental toxicity in the 100 mg/kg group. It was concluded that BPA administration during the entire period of pregnancy in rats produced pregnancy failure, pre- and postimplantation loss, fetal developmental delay and severe maternal toxicity, but no embryo-fetal dysmorphogenesis at an oral exposure level of 1000 mg/kg.  相似文献   

9.
BACKGROUND: Ustekinumab is a human monoclonal antibody that binds to the p40 subunit of interleukin (IL) 12 and IL‐23 and inhibits their pharmacological activity. To evaluate potential effects of ustekinumab treatment during pregnancy, developmental studies were conducted in cynomolgus macaques. METHODS: Ustekinumab was tested in two embryo/fetal development (EFD) studies and in a combined EFD/pre and postnatal development (PPND) study. In the EFD studies, pregnant macaques (12/group) were dosed with saline or ustekinumab (9 mg/kg IV, 22.5 mg/kg SC, or 45 mg/kg IV or SC during the period of major organogenesis, gestation day [GD] 20–50). Fetuses were harvested on GD100–102 and examined for any effects on development. In the EFD/PPND study, pregnant macaques were injected with saline or ustekinumab (22.5 or 45 mg/kg SC) from GD20 through lactation day 33. Infants were examined from birth through 6 months of age for morphological and functional development. Potential effects on the immune system were evaluated by immunophenotyping of peripheral blood lymphocytes and immunohistopathology of lymphoid tissues in fetuses and infants and by T‐dependent antibody response (TDAR) to KLH and TTX and by DTH response in infants. Ustekinumab concentrations were measured in serum from dams, fetus, and infants and in breast milk. RESULTS: Ustekinumab treatment produced no maternal toxicity and no toxicity in the fetuses or infants, including no effects on the TDAR or DTH responses. Ustekinumab was present in serum from GD100 fetuses and was present in infant serum through day 120 post‐birth. Low levels of ustekinumab were present in breast milk. CONCLUSIONS: Exposure of macaque fetuses and infants to ustekinumab had no adverse effects on pre‐ and postnatal development. Birth Defects Res (Part B) 89:351–363, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

10.
Soman (GD; phosphonofluoridic acid, methyl-,1,2,2-trimethylpropyl ester) is an organophosphate compound with potent anticholinesterase activity. To determine developmental toxicity, soman was administered orally to CD rats on days 6 through 15 of gestation at dose levels of 0, 37.5, 75, 150, or 165 micrograms/kg/day and to New Zealand White (NZW) rabbits on days 6 through 19 of gestation at dose levels of 0, 2.5, 5, 10, or 15 micrograms/kg/day. At sacrifice, gravid uteri were weighed and examined for number and status of implants. Individual fetal body weights and external, visceral, and skeletal malformations were recorded. Mean maternal weight changes, fetal implantation status/litter, fetal weight, and fetal malformations/litter were compared between dose groups. Monitors for maternal toxicity were net body weight change, treatment weight change, mortality, and clinical signs of toxicity such as lethargy, ataxia, and tremors. Maternal rats and rabbits in the high-dose groups exhibited statistically significant increases in toxicity and mortality when compared to controls. There were no significant dose-related effects among dose groups in the prevalence of postimplantation loss, malformations, or in average body weight of live fetuses per litter. There was no evidence of increased prenatal mortality or fetal toxicity in the CD rat or NZW rabbit following exposure to soman, even at a dose that produced significant maternal toxicity.  相似文献   

11.
BACKGROUND: The developmental toxicity of flusilazole was studied in CD-1 mice after oral administration. METHODS: Pregnant mice were given flusilazole at doses of 0 (corn oil), 10, 20, and 40 mg/kg/day, by gavage, on gestational days (GD) 6-15. RESULTS: Maternal toxicity, as evidenced by reduction in body weight gain and signs of toxicity, was observed at the middle- and high-dose groups. No significant incidence of resorptions or death was observed in any of dose groups. There was a pronounced reduction in fetal weight, which was significantly lower than control from 20 and 40 mg/kg/day. There was no significant increase in the incidence of fetuses with external or visceral malformations in any of dose groups, but there was a significant increase in the incidence of skeletal malformations was observed at 20 and 40 mg/kg/day. CONCLUSIONS: The results of this study reported marked maternal toxicity, growth retardation, and skeletal abnormalities in the mid- and high-dose groups. It seems likely that marked maternal toxicity contributed to the observed alterations in fetal growth retardation and skeletal development. The no-observed-effect level in the present study for maternal and developmental toxicity was 10 mg/kg/day.  相似文献   

12.
BACKGROUND: Although the potential risk of carbon nanotubes (CNTs) to humans has recently increased due to expanding production and widespread use, the potential adverse effects of CNTs on embryo–fetal development have not yet been determined. METHODS: This study investigated the potential effects of multi‐wall CNTs (MWCNTs) on pregnant dams and embryo–fetal development in rats. MWCNTs were administered to pregnant rats by gavage at 0, 40, 200, and 1,000 mg/kg/day. All dams were subjected to Cesarean section on day 20 of gestation, and the fetuses were examined for any morphological abnormalities. RESULTS: All animals survived to the end of the study. A decrease in thymus weight was observed in the high dose group in a dose‐dependent manner. However, maternal body weight, food consumption, and oxidant–antioxidant balance in the liver were not affected by treatment with MWCNTs. No treatment‐related differences in gestation index, fetal deaths, fetal and placental weights, or sex ratio were observed between the groups. Morphological examinations of the fetuses demonstrated no significant difference in incidences of abnormalities between the groups. CONCLUSIONS: The results show that repeated oral doses of MWCNTs during pregnancy induces minimal maternal toxicity and no embryo–fetal toxicity at 1,000 mg/kg/day in rats. The no‐observed‐adverse‐effect level of MWCNTs is considered to be 200 mg/kg/day for dams and 1,000 mg/kg/day for embryo–fetal development. In this study, the dosing formulation was not analyzed to determine the degree of reaggregation (or not), nor were blood levels of CNT's measured in the dosed animals to verify or characterize absorption. Birth Defects Res (Part B) 92:69–76, 2011. © 2011 Wiley‐Liss, Inc.  相似文献   

13.
The hypothesis that chemically induced overt maternal toxicity induces a characteristic syndrome of adverse developmental effects in the rat was investigated. Pregnant animals (Sprague-Dawley strain) were dosed by oral gavage with one of a series of compounds on days 6-15 of gestation. These chemicals were diquat (DIQ), ethylene-bis-isothiocyanate (EBIS), toxaphene (TOX), styrene (STY), 2,4-dichlorophenoxyacetic acid (2,4-D), 2,4,5-trichlorophenol (2,4,5-Tr), triphenyl tin hydroxide (TPTH), and cacodylic acid (CAC). The compounds were chosen because they exhibited little or no developmental toxicity in previous studies. Dosage levels producing maternal weight loss and/or lethality were determined from preliminary toxicity studies. Significant maternal weight reductions were noted during the course of treatment with all compounds except CAC and 2,4,5-Tr. Maternal lethality was produced by EBIS, TOX, 2,4,-D, and 2,4,5-Tr. The main treatment-related developmental toxicity noted in litters at term consisted of increased lethality (EBIS, TPTH) and decreased fetal weight (EBIS and CAC). Treatment-related anomalies were seen in litters treated with 2,4-D and TOX (supernumerary ribs) and with EBIS and STY (enlarged renal pelvis). No significant developmental effects were produced with DIQ, or 2,4,5-Tr. This study indicates that overt maternal toxicity as defined by weight loss or mortality is not always associated with the same defined syndrome of adverse developmental effects in the rat.  相似文献   

14.
BACKGROUND: This study was conducted to evaluate the potential adverse effects of whole-body inhalation exposure of F0 and F1 parental animals from a 2-generation reproduction study of ethylbenzene on nervous system functional and/or morphologic end points in the F2 offspring from four groups of male and female Crl:CD (SD)IGS BR rats. METHODS: Thirty rats/sex/group for F0 and 25/sex/group for F1 were exposed to 0, 25, 100, and 500 ppm ethylbenzene for six hours daily for at least 70 consecutive days prior to mating for the F0 and F1 generations. Inhalation exposure for the F0 and F1 females continued throughout mating and gestation through Gestation Day (GD) 20. On lactation days (LD) 1-4, the F0 and F1 females received no inhalation exposure, but instead were administered ethylbenzene in corn oil via oral gavage at dosages estimated to result in similar internal maternal exposure based upon PBPK modeling estimates (0, 26, 90, and 342 mg/kg/day, respectively, divided into three equal doses, approximately two hours apart). Inhalation exposure of the F0 and F1 females was reinitiated on LD 5 and continued through weaning on postnatal day (PND) 21. Survival, body weights, and physical landmarks were assessed in selected F2 offspring. Neurobehavioral development of one F2-generation treatment derived offspring/sex/litter was assessed in a functional observational battery (FOB; PND 4, 11, 22, 45, and 60), motor activity sessions (PND 13, 17, 21, and 61), acoustic startle testing (PND 20 and 60), a Biel water maze learning and memory task (initiated on PND 26 or 62), and in evaluations of whole-brain measurements and brain morphometric and histologic assessments (PND 21 and 72). RESULTS: There were no adverse effects on reproductive performance in either the F0 or F1 parental generations exposed to up to 500 ppm ethylbenzene [Faber et al. Birth Defects Res Part B 77:10-21, 2006]. In the current developmental neurotoxicity component, parental ethylbenzene exposure did not adversely affect offspring survival, clinical condition, body weight parameters, or acquisition of developmental landmarks of the F2-generation treatment derived offspring. There were no alterations in FOB parameters, motor activity counts, acoustic startle endpoints, or Biel water maze performance in offspring attributed to parental ethylbenzene exposure. A few isolated instances of statistically significant differences obtained in the treatment-derived groups occurred sporadically, and were attributed to unusual patterns of development and/or behavior in the concurrent control group. There were no exposure-related differences in any neuropathology parameters in the F2-generation treatment derived offspring. CONCLUSIONS: The no observed adverse effect level (NOAEL) for maternal reproductive toxicity, developmental toxicity, and developmental neurotoxicity in this study was considered to be 500 ppm/342 mg/kg/day ethylbenzene, the highest exposure level tested in the study.  相似文献   

15.
It has been proposed that the anticonvulsant drug phenytoin (PHT) and glucocorticoids induce orofacial clefting by the same mechanism. Previous work had demonstrated that PHT treatment significantly increased endogenous maternal corticosterone concentrations for approximately 48 hr after dosing in A/J mice. The purpose of the present investigation was to determine whether PHT is embryotoxic in the absence of endogenous maternal glucocorticoids. Maternal adrenal glands were removed on Day 7 of gestation, and the incidence of clefting after PHT treatment was determined. There was a high level of maternal toxicity following adrenalectomy (ADX) and PHT treatment at either 60 or 75 mg/kg. This increased toxicity did not appear to be due to altered maternal drug levels in ADX mice. There was a significant increase in the clefting incidence among offspring of ADX dams treated with PHT at 60 mg/kg. This dose of PHT did not elevate maternal corticosterone levels in ADX dams. These data suggest that PHT is capable of producing clefts in the absence of endogenous maternal corticosterone.  相似文献   

16.
Developmental toxicity evaluation of berberine in rats and mice   总被引:1,自引:0,他引:1  
BACKGROUND: Berberine, a plant alkaloid, is found in some herbal teas and health-related products. It is a component of goldenseal, an herbal supplement. Berberine chloride dihydrate (BCD) was evaluated for developmental toxicity in rats and mice. METHODS: Berberine chloride dihydrate was administered in the feed to timed-mated Sprague-Dawley (CD) rats (0, 3,625, 7,250, or 14,500 ppm; on gestational days [GD] 6-20), and Swiss Albino (CD-1) mice (0, 3,500, 5,250, or 7,000 ppm; on GD 6-17). Ingested doses were 0, 282, 531, and 1,313 mg/kg/day (rats) and 0, 569, 841, and 1,155 mg/kg/day (mice). RESULTS: There were no maternal deaths. The rat maternal lowest observed adverse effect level (LOAEL), based on reduced maternal weight gain, was 7,250 ppm. The rat developmental toxicity LOAEL, based on reduced fetal body weight per litter, was 14,500 ppm. In the mouse study, equivocal maternal and developmental toxicity LOAELs were 5,250 ppm. Due to scattering of feed in the high dose groups, a gavage study at 1,000 mg/kg/day was conducted in both species. CONCLUSIONS: In rats, maternal, but not fetal adverse effects were noted. The maternal toxicity LOAEL remained at 7,250 ppm (531 mg/kg/day) based on the feed study and the developmental toxicity NOAEL was raised to 1,000 mg/kg/day BCD based on the gavage study. In the mouse, 33% of the treated females died. Surviving animals had increased relative water intake, and average fetal body weight per litter decreased 5-6% with no change in live litter size. The maternal toxicity LOAEL remained at 5,250 ppm (841 mg/kg/day) BCD, based on increased water consumption. The developmental toxicity LOAEL was raised to 1,000 mg/kg/day BCD based on decreased fetal body weight.  相似文献   

17.
BACKGROUND: Sodium thioglycolate, which has widespread occupational and consumer exposure to women from cosmetics and hair‐care products, was evaluated for developmental toxicity by topical exposure during the embryonic and fetal periods of pregnancy METHODS: Timed‐mated Sprague–Dawley rats (25/group) and New Zealand White (NZW) rabbits (24/group) were exposed to sodium thioglycolate in vehicle (95% ethanol:distilled water, 1:1) by unoccluded topical application on gestational days (GD) 6–19 (rats) or 6–29 (rabbits) for 6 hr/day, at 0, 50, 100, or 200 mg/kg body weight/day (rats) and 0, 10, 15, 25, or 65 mg/kg/day (rabbits). At termination (GD 20 rats; GD 30 rabbits), fetuses were examined for external, visceral, and skeletal malformations and variations. RESULTS: In rats, maternal topical exposure to sodium thioglycolate, at 200 mg/kg/day (the highest dose tested) on GD 6–19, resulted in maternal toxicity, including reduced body weights and weight gain, increased relative water consumption and one death. Treatment‐related increases in feed consumption and changes at the application site occurred at all doses, in the absence of increased body weights or body weight change. Fetal body weights/litter were decreased at 200 mg/kg/day, with no other embryo/fetal toxicity and no treatment‐related teratogenicity in any group. In rabbits, maternal topical exposure to sodium thioglycolate on GD 6–29 resulted in maternal dose‐related toxicity at the dosing site in all groups; no maternal systemic toxicity, embryo/fetal toxicity, or treatment‐related teratogenicity were observed in any group. CONCLUSIONS: A no observed adverse effect level (NOAEL) was not identified for maternal toxicity in either species with the dosages tested. The developmental toxicity NOAEL was 100 mg/kg/day (rats) and ≥65 mg/kg/day (rabbits; the highest dose tested). The clinical relevance of theses study results is uncertain because no data were available for levels, frequency, or duration of exposures in female workers or end users. Birth Defects Research Part B 68:144–161, 2003. © 2003 Wiley‐Liss, Inc.  相似文献   

18.
BACKGROUND: 1,6-Hexamethylene diisocyanate (HDI), a widely used chemical in commercial polyurethane manufacture, has been shown to affect the respiratory tract of experimental animals. However, its potential to affect neonatal development, particularly after inhalation exposure, is less well described. The present study was conducted to assess the developmental toxicity of HDI. METHODS: Gravid Sprague-Dawley rats were exposed to concentrations of 0, 0. 005, 0.050, or 0.300 ppm HDI via inhalation (whole-body exposure) on days 0-19 of gestation. Maternal toxicity, as demonstrated by clinical signs and changes in body weight gain during gestation, was characterized. Dams were sacrificed on gestation day 20, at which time fetuses were removed by cesarean section, the uterus was examined, and a gross maternal necropsy was performed. Maternal evaluation also included lung weight and a detailed histopathologic assessment of the nasal turbinates, larynx, trachea, and lungs. All fetuses were evaluated for external anomalies. Approximately one-half of each litter was examined for visceral effects, the other half underwent a skeletal (bone and cartilage) examination. RESULTS: Maternal toxicity was demonstrated in the 0.300- and, to a lesser extent, in the 0.050-ppm exposure groups. No maternal effects were noted in the 0.005-ppm group. Test compound-related maternal effects were restricted to histopathological findings and included acanthosis, hyperkeratosis, inflammation of the nasal turbinates, and, more seriously, degeneration of the olfactory epithelium. No pathological alterations were noted in the larynx, trachea, or lungs in any dose group. No test compound-related effects were observed on any reproductive parameters, or any embryonic endpoints, including pre/postimplantation loss and resorption. There were no effects on litter size or the number of fetuses per implantation site and no effects on fetal or placental weights were observed. No test compound-related fetal external, visceral, or skeletal findings were observed. No effect on the fetal or litter incidence of total malformations or variations was observed, and there was no difference in the incidence of malformations between males and females. CONCLUSIONS: Administered as described in this study, 1, 6-HDI produced maternal effects (nasal turbinate histopathology) at concentrations of 0.050 and 0.300 ppm with no developmental toxicity observed at any concentration.  相似文献   

19.
K S Khera 《Teratology》1985,31(1):129-153
Data from animal teratology studies were surveyed to determine whether embryo-fetal mortality and fetal malformations result from a primary action of the agent on the conceptus or if they are secondary to maternal toxicity--a consequence of administration with high dose levels of test chemicals. A fairly strong association between embryo-fetal mortality and maternal toxicity was revealed by analysis of data from hamsters, mice, rats, and rabbits in 234 studies of chemical and physical agents, of which 83 were conducted at both maternotoxic and nonmaternotoxic doses, 94 only at maternotoxic doses, and 49 at nonmaternotoxic doses. In the above studies, only nine chemicals (four each in hamsters and rabbits and one in rats) were reported to induce embryo-fetal deaths at apparently nonmaternotoxic doses. These findings tend to suggest a contributory role for maternal toxicity in the induction of embryo-fetal deaths. The previously reported hypothesis that certain fetal defects in mice may perhaps be caused by maternal toxicity was also found to be true in a review of data on hamsters, rats, and rabbits. Salient maternal toxicity-associated fetal malformations were exencephaly, encephalocele, micro- or anophalmia, and fused ribs in hamsters and defective (fused, missing, or extra) ribs, vertebrae, and sternebrae, ex-, an-, or microphthalmia, and cleft palate in rats and rabbits. These malformations occurred at low frequencies, generally with no readily apparent dose-response relationship. Presumptive evidence indicates that embryo-fetal deaths, and the above-mentioned fetal malformations in experimental animals, which in published literature are presently attributed to chemical induction for a large number of chemicals, may be a consequence of maternal toxicity per se.  相似文献   

20.
The ovariectomized old cynomolgus monkey is a recognized model of human osteoporosis, and the same species can be used for the assessment of the efficacy and potential toxicity of agents intended to prevent or treat osteoporosis. Several assays have been developed that can measure the same biochemical markers of bone turnover as are used in human patients for the diagnosis and treatment follow-up of bone-related diseases, including osteoporosis. The aim of the present study was to describe the results obtained with these assays in normal control monkeys, their variations with age and sex, and their sensitivity in monitoring the bone turnover induced by ovariectomy in old skeletally mature cynomolgus monkeys. Seven old cynomolgus monkeys were bilaterally ovariectomized and 13 age-matched monkeys were sham-operated. Bone mineral density and biochemical markers were measured before and at regular intervals after surgery for up to 20 months. Total alkaline phosphatase (total ALP), bone-specific alkaline phosphatase isoenzyme (bone ALP) and osteocalcin (OC) were highly correlated to the decrease in bone mineral density (BMD) induced by ovariectomy. Deoxypyridinoline (DPD) measured by enzyme-linked immunoassay was insensitive to the bone resorption induced by ovariectomy, but cross-linked N-telopeptide (NTX-I) was higher in ovariectomized monkeys than in control monkeys. These results demonstrate that reliable biochemical parameters are available to adequately monitor and provide insight into osteoclastic bone resorption and osteoblastic bone formation, the two components of bone turnover in this animal model, and can thus be used to assess the efficacy and toxicity of potential therapeutic agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号