首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 681 毫秒
1.
Many natural DNA site-specific recombination systems achieve directionality and/or selectivity by making recombinants with a specific DNA topology. This property requires that the DNA architecture of the synapse and the mechanism of strand exchange are both under strict control. Previously we reported that Tn3 resolvase-mediated synapsis of the accessory binding sites from the Tn3 recombination site res can impose topological selectivity on Cre/loxP recombination. Here, we show that the topology of these reactions is profoundly affected by subtle changes in the hybrid recombination site les. Reversing the orientation of loxP relative to the res accessory sequence, or adding 4 bp to the DNA between loxP and the accessory sequence, can switch between two-noded and four-noded catenane products. By analysing Holliday junction intermediates, we show that the innate bias in the order of strand exchanges at loxP is maintained despite the changes in topology. We conclude that a specific synaptic structure formed by resolvase and the res accessory sequences permits Cre to align the adjoining loxP sites in several distinct ways, and that resolvase-mediated intertwining of the accessory sequences may be less than has been assumed previously.  相似文献   

2.
By placing loxP adjacent to the accessory sequences from the Xer/psi multimer resolution system, we have imposed topological selectivity and specificity on Cre/loxP recombination. In this hybrid recombination system, the Xer accessory protein PepA binds to psi accessory sequences, interwraps them, and brings the loxP sites together such that the product of recombination is a four-node catenane. Here, we investigate communication between PepA and Cre by varying the distance between loxP and the accessory sequences, and by altering the orientation of loxP. The yield of four-node catenane and the efficiency of recombination in the presence of PepA varied with the helical phase of loxP with respect to the accessory sequences. When the orientation of loxP was reversed, or when half a helical turn was added between the accessory sequences and loxP, PepA reversed the preferred order of strand exchange by Cre at loxP. The results imply that PepA and the accessory sequences define precisely the geometry of the synapse formed by the loxP sites, and that this overcomes the innate preference of Cre to initiate recombination on the bottom strand of loxP. Further analysis of our results demonstrates that PepA can stimulate strand exchange by Cre in two distinct synaptic complexes, with the C-terminal domains of Cre facing either towards or away from PepA. Thus, no specific PepA-recombinase interaction is required, and correct juxtaposition of the loxP sites is sufficient to activate Cre in this system.  相似文献   

3.
Tn3 resolvase promotes site-specific recombination between two res sites, each of which has three resolvase dimer-binding sites. Catalysis of DNA-strand cleavage and rejoining occurs at binding site I, but binding sites II and III are required for recombination. We used an in vivo screen to detect resolvase mutants that were active on res sites with binding sites II and III deleted (that is, only site I remaining). Mutations of amino acids Asp102 (D102) or Met103 (M103) were sufficient to permit catalysis of recombination between site I and a full res, but not between two copies of site I. A double mutant resolvase, with a D102Y mutation and an additional activating mutation at Glu124 (E124Q), recombined substrates containing only two copies of site I, in vivo and in vitro. In these novel site Ixsite I reactions, product topology is no longer restricted to the normal simple catenane, indicating synapsis by random collision. Furthermore, the mutants have lost the normal specificity for directly repeated sites and supercoiled substrates; that is, they promote recombination between pairs of res sites in linear molecules, or in inverted repeat in a supercoiled molecule, or in separate molecules.  相似文献   

4.
Site-specific recombination by the Cre recombinase takes place at a simple DNA site (loxP), requires no additional proteins and gives topologically simple recombination products. In contrast, cer and psi sites for Xer recombination contain approximately 150 bp of accessory sequences, require accessory proteins PepA, ArgR and ArcA, and the products are specifically linked to form a four-noded catenane. Here, we use hybrid sites consisting of accessory sequences of cer or psi fused to loxP to probe the function of accessory proteins in site-specific recombination. We show that PepA instructs Cre to produce four-noded catenane, but is not required for recombination at these hybrid sites. Mutants of Cre that require PepA and accessory sequences for efficient recombination were selected. PepA-dependent Cre gave products with a specific topology and displayed resolution selectivity. Our results reveal that PepA acts autonomously in the synapsis of psi and cer accessory sequences and is the main architectural element responsible for intertwining accessory site DNA. We suggest that accessory proteins can activate recombinases simply by synapsing the regulatory DNA sequences, thus bringing the recombination sites together with a specific geometry. This may occur without the need for protein-protein interactions between accessory proteins and the recombinases.  相似文献   

5.
Geometric arrangements of Tn3 resolvase sites   总被引:8,自引:0,他引:8  
Site-specific recombination by Tn3 resolvase normally occurs in vitro and in vivo only between directly repeated res sites on the same supercoiled DNA molecule. However, with multiply interlinked catenane substrates consisting of two DNA rings each containing a single res site, resolvase efficiently carried out intermolecular recombination. The topology of the knots produced by several rounds of this reaction proves that the DNA within the synaptic intermediate is coiled in an interwound (plectonemic) fashion rather than wrapped solenoidally around resolvase as in previously characterized supercoiled DNA-protein complexes. The synaptic intermediate can contain equivalently supercoil, catenane, or knot crossings as long as the res sites have a right-handed coiling and a particular relative orientation. The structure of the product knots and catenanes also shows the path the DNA takes during strand exchange. Intermolecular recombination within multiply linked catenanes required negative supercoiling, as does the standard intramolecular reaction.  相似文献   

6.
In vitro recombination by Tn3 resolvase of plasmids containing two directly repeated recombination (res) sites generates two singly interlinked catenated rings. This simple product catenane structure was maintained over a wide range of substrate supercoil densities and in a reaction mixture in which phage lambda Int-mediated recombination generated its characteristic multiply interlinked forms. Using substrates containing four res sites, we found that resolvase recombined neighboring res sites with high preference. This position effect implies that resolvase searches systematically along the DNA for a partner site. Intervening res sites in the opposite orientation did not prevent translocation. We analyzed the geometric arrangement of the interlocked rings after multiple recombination events in a four-site substrate and the pattern of segregation of nonspecific reporter rings catenated to the standard substrate. The results of these novel topological tests imply that the translocating enzyme may not make continuous contact with the DNA.  相似文献   

7.
Resolvases from Tn3-like transposons catalyse site-specific recombination at res sites. Each res site has 3 binding sites for resolvase, I, II, and III. The res sites in Tn3 and Tn21 have similar structures at I and II but they differ at III. Mutagenesis of the Tn21 res site showed that sub-site III is essential for recombination though the sequences in III that are recognized by Tn21 resolvase are positioned differently from the equivalent sequences in the Tn3 site. The deletion of III caused a 1,000-fold drop in the rate of recombination. But other mutations at III, changing 3 or 4 consecutive base pairs, caused only 1.5- to 4-fold decreases in rate, even when the mutations were in target sequences for this helix-turn-helix protein. The reason why Tn21 resolvase has similar activities at a number of different DNA sequences may be due to the multiplicity of protein-protein and protein-DNA interactions in its recombinogenic complex. This lack of precision may be a general feature of nucleoprotein complexes.  相似文献   

8.
Catalysis of DNA recombination by Tn3 resolvase is conditional on prior formation of a synapse, comprising 12 resolvase subunits and two recombination sites (res). Each res binds a resolvase dimer at site I, where strand exchange takes place, and additional dimers at two adjacent 'accessory' binding sites II and III. 'Hyperactive' resolvase mutants, that catalyse strand exchange at site I without accessory sites, were selected in E. coli. Some single mutants can resolve a res x site I plasmid (that is, with one res and one site I), but two or more activating mutations are necessary for efficient resolution of a site I x site I plasmid. Site I x site I resolution by hyperactive mutants can be further stimulated by mutations at the crystallographic 2-3' interface that abolish activity of wild-type resolvase. Activating mutations may allow regulatory mechanisms of the wild-type system to be bypassed, by stabilizing or destabilizing interfaces within and between subunits in the synapse. The positions and characteristics of the mutations support a mechanism for strand exchange by serine recombinases in which the DNA is on the outside of a recombinase tetramer, and the tertiary/quaternary structure of the tetramer is reconfigured.  相似文献   

9.
The dual functions of resolvase, site-specific recombination and the regulation of its own expression from tnpR, both require the interaction of this protein with the DNA sequence at res, but the specificity of this interaction differs between groups of Tn3-like elements. In this study, DNA fragments that contained res from Tn21 or Tn1721 were subjected to either cleavage by DNase I or methylation by dimethyl sulphate in the presence of the purified resolvase from Tn21 or Tn1721. These experiments showed that each resolvase bound to the same three sites (I, II and III) within res from Tn1721 and to an equivalent series of three sites on Tn21: the differences in the amino acid sequences of the two proteins did not affect their interaction with either DNA. The DNA sequences at each site had some similarities and, in conjunction with data from the related transposon Tn501, a consensus was established. However, the three sites are functionally distinct: site I (tnpR-distal) spans the recombination cross-over point and sites II and III (tnpR-proximal) overlap the promoter of tnpR. The binding sites on these transposons were compared with those in the gamma delta/Tn3 system: the similarities between the two groups of transposons revealed some general features of resolvase-DNA interactions while the differences in fine structure elucidated the specificity of each resolvase.  相似文献   

10.
The Flp site-specific recombinase functions in the copy number amplification of the yeast 2 microm plasmid. The recombination reaction is catalyzed by four monomers of Flp bound to two separate, but identical, recombination sites (FRT sites) and occurs in two sequential pairs of strand exchanges. The relative orientation of the two recombination sites during synapsis was examined. Topoisomerase relaxation and nick ligation were used to detect topological nodes introduced by the synapse prior to the chemical steps of recombination. A single negative supercoil was found to be trapped by Flp in substrates with inverted FRT sites whereas no trapped supercoils were observed with direct repeats. The topology of products resulting from Flp-mediated recombination adjacent to a well characterised synapse, that of Tn3 resolvase/res, was analyzed. The deletion and inversion reactions yielded the four noded catenane and the three noded knot, respectively, as the simplest and the most abundant products. The linking number change introduced by the Flp-mediated inversion reaction was determined to be +/-2. The most parsimonious explanation of these results is that Flp aligns its recombination sites with antiparallel geometry. The majority of synapses appear to occur without entrapment of additional random plectonemic DNA supercoils between the sites and no additional crossings are introduced as a result of the chemical steps of recombination.  相似文献   

11.
The Tn3 resolvase requires that the two recombination (res) sites be aligned as direct repeats on the same molecule for efficient recombination to occur. To test whether resolvase must contact the DNA between res sites as predicted by tracking models, we have determined the sensitivity of recombination to protein diffusion blockades. Recombination between two res sites is unaffected either by lac repressor or bacteriophage T7 RNA polymerase being bound between them. Yet recombination is inhibited by lac repressor if the res site is bounded by a lac operator on both sides. We demonstrate that lac repressor will bind to more than one DNA site under the conditions used to assay recombination. This result suggests that lac repressor can inhibit resolvase by forming a DNA loop that isolates a res site topologically. These results do not support a tracking model for resolvase but suggest that the structure and topology of the DNA substrate is important in the formation of a synapse between res sites.  相似文献   

12.
Flp and Cre-mediated recombination on symmetrized FRT and loxP sites, respectively, in circular plasmid substrates yield both DNA inversion and deletion. However, upon sequestering three negative supercoils outside the recombination complex using the resII-resIII synapse formed by Tn3 resolvase and the LER synapse formed by phage Mu transposase in the case of Flp and Cre, respectively, the reactions are channeled towards inversion at the expense of deletion. The inversion product is a trefoil, its unique topology being conferred by the external resolvase or LER synapse. Thus, Flp and Cre assign their symmetrized substrates a strictly antiparallel orientation with respect to strand cleavage and exchange. These conclusions are supported by the product profiles from tethered parallel and antiparallel native FRT sites in dilution and competition assays. Furthermore, the observed recombination bias favoring deletion over inversion in a nicked circular substrate containing two symmetrized FRT sites is consistent with the predictions from Monte Carlo simulations based on antiparallel synapsis of the DNA partners.  相似文献   

13.
M A Krasnow  N R Cozzarelli 《Cell》1983,32(4):1313-1324
We studied the dynamics of site-specific recombination by the resolvase encoded by the Escherichia coli transposon Tn3. The pure enzyme recombined supercoiled plasmids containing two directly repeated recombination sites, called res sites. Resolvase is the first strictly site-specific topoisomerase. It relaxed only plasmids containing directly repeated res sites; substrates with zero, one or two inverted sites were inert. Even when the proximity of res sites was ensured by catenation of plasmids with a single site, neither relaxation nor recombination occurred. The two circular products of recombination were catenanes interlinked only once. These properties of resolvase require that the path of the DNA between res sites be clearly defined and that strand exchange occur with a unique geometry. A model in which one subunit of a dimeric resolvase is bound at one res site, while the other searches along adjacent DNA until it encounters the second site, would account for the ability of resolvase to distinguish intramolecular from intermolecular sites, to sense the relative orientation of sites and to produce singly interlinked catenanes. Because resolvase is a type 1 topoisomerase, we infer that it makes the required duplex bDNA breaks of recombination one strand at a time.  相似文献   

14.
We have isolated in quantitative yield the synaptic intermediate formed during site-specific recombination by Tn3 resolvase and characterized it by restriction endonuclease mapping, electron microscopy and topological methods. The intermediate accumulates at low reaction temperatures and is stabilized by crosslinking of the resolvase protomers with glutaraldehyde. The DNA-resolvase complex that maintains the structure of the intermediate (the synaptosome) is approximately 100 A in diameter, forms specifically at resolution (res) sites, and requires two res sites in a supercoiled DNA molecule. Resolvase bound to individual res sites protects approximately -0.5 supercoil per site from relaxation by a topoisomerase, whereas the formation of the synaptosome protects -3 supercoils and condenses the associated DNA to a supercoil density 2.5 times that of the non-complexed substrate. Although recombination requires two directly repeated res sites, both direct and inverted sites form synaptosomes. We conclude that the specificity of recombination is achieved by a three-stage recognition system: binding of resolvase to separate sites, formation of the synaptosome and determination of site orientation from within the complex.  相似文献   

15.
Previously, we isolated several inhibitors that block the site-specific recombination reaction mediated by the Tn3-encoded resolvase protein. One class of inhibitors blocks resolvase binding to the recombination (res) sitc, and a second class inhibits synapse formation between resolvase and two directly repeated res sites. In this report, we identify an inhibitor, A20832, that does not inhibit resolvase binding to res, as measured by filter binding, or synapse formation. Inhibition of resolvase-promoted site-specific recombination by A20832 occurs postsynaptically at strand cleavage. DNase I analysis in the presence of A20832 indicates that only site I of res is bound by resolvase.  相似文献   

16.
The solution properties of Tn3 resolvase (Tn3R) were studied by sedimentation equilibrium, sedimentation velocity analytical ultracentrifugation, and small-angle neutron scattering. Tn3R was found to be in a monomer-dimer self-association equilibrium, with a dissociation constant of K(D)(1-2)=50 microM. Sedimentation velocity and small-angle neutron scattering data are consistent with a solution structure of dimeric Tn3R similar to that of gammadelta resolvase in a co-crystal structure, but with the DNA-binding domains in a more extended conformation. The solution conformations of sites I, II, and III were studied with small angle x-ray scattering and modeled using rigid-body and ab initio techniques. The structures of these sites do not show any distortion, at low resolution, from B-DNA. The equilibrium binding properties of Tn3R to the individual binding sites in res were investigated by employing fluorescence anisotropy measurements. It was found that site II and site III have the highest affinity for Tn3R, followed by site I. Finally, the affinity of Tn3R for nonspecific DNA was assayed by competition experiments.  相似文献   

17.
The Tn3-encoded resolvase protein promotes a site-specific recombination reaction between two directly repeated copies of the recombination site res. Several inhibitors that block this event in vitro have been isolated. In this study four of these inhibitors were tested on various steps in the recombination reaction. Two inhibitors. A9387 and A1062, inhibit resolvase binding to the res site. Further, DNase I footprinting revealed that at certain concentrations of A9387 and A1062, resolvase was preferentially bound to site I of res, the site containing the recombinational crossover point. The two other inhibitors, A20812 and A21960, do not affect resolvase binding and bending of the DNA but inhibit synapse formation between resolvase and two directly repeated res sites.  相似文献   

18.
19.
The resolvases from the transposons Tn3 and Tn21 are homologous proteins but they possess distinct specificities for the DNA sequence at their respective res sites. The DNA binding domain of resolvase contains an amino acid sequence that can be aligned with the helix-turn-helix motif of other DNA binding proteins. Mutations in the gene for Tn21 resolvase were made by replacing the section of DNA that codes for the helix-turn-helix with synthetic oligonucleotides. Each mutation substituted one amino acid in Tn21 resolvase with either the corresponding residue from Tn3 resolvase or a residue that lacks hydrogen bonding functions. The ability of these proteins to mediate recombination between res sites from either Tn21 or Tn3 was measured in vivo and in vitro. With one exception, where a glutamate residue had been replaced by leucine, the activity of these mutants was similar to that of wild-type Tn21 resolvase. A further mutation was made in which the complete recognition helix of Tn21 resolvase was replaced with that from Tn3 resolvase. This protein retained activity in recombining Tn21 res sites, though at a reduced level relative to wild-type; the reduction can be assigned entirely to weakened binding to this DNA. Neither this mutant nor any other derivative of Tn21 resolvase had any detectable activity for recombination between res sites from Tn3. The exchange of this section of amino acid sequence between the two resolvases is therefore insufficient to alter the DNA sequence specificity for recombination.  相似文献   

20.
Bacteriophage P1 encodes a site-specific recombination system that consists of a site (loxP) at which recombination occurs and a gene, cre, whose protein product is essential for recombination. The loxP-Cre recombination event can be studied in greater detail by the use of an in vitro system that efficiently carries out recombination between two loxP sites. This paper presents a purification and characterization of the Cre protein (Mr = 35,000), which is the only protein required for the in vitro reaction. No high energy cofactors are needed. The purified Cre protein binds to loxP-containing DNA and makes complexes that are resistant to heparin. Cre efficiently converts 70% of the DNA substrate to products and appears to act stoichiometrically. The action of Cre on a loxP2 supercoiled substrate containing two directly repeated loxP sites results in product molecules that are topologically unlinked. Several models to account for the ability of Cre to produce free supercoiled products are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号