共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract: Rats were injected with saline or the γ-aminobutyric acid (GABA) transaminase inhibitor γ-vinyl-GABA for 7 days and the effects on GABA content and glutamic acid decarboxylase (GAD) activity, and the protein and mRNA levels of the two forms of GAD (GAD67 and GAD65 ) in the cerebral cortex were studied. γ-Vinyl-GABA induced a 2.3-fold increase in GABA content, whereas total GAD activity decreased by 30%. Quantitative immunoblotting showed that the decline in GAD activity was attributable to a 75–80% decrease in GAD67 levels, whereas the levels of GAD65 remained unchanged. RNA slot-blotting with a 32 P-labeled GAD67 cDNA probe demonstrated that the change in GAD67 protein content was not associated with a change in GAD67 mRNA levels. Our results suggest that GABA specifically controls the level of GAD67 protein. This effect may be mediated by a decreased translation of the GAD67 mRNA and/or a change in the stability of the GAD67 protein. 相似文献
2.
Daniel L. Kaufman Carolyn R. Houser†‡§ Allan J. Tobin‡ 《Journal of neurochemistry》1991,56(2):720-723
Glutamate decarboxylase (GAD) catalyzes the production of gamma-aminobutyric acid (GABA), a major inhibitory neurotransmitter. The mammalian brain contains two forms of GAD, with Mrs of 67,000 and 65,000 (GAD67 and GAD65). Using a new antiserum specific for GAD67 and a monoclonal antibody specific for GAD65, we show that the two forms of GAD differ in their intraneuronal distributions: GAD67 is widely distributed throughout the neuron, whereas GAD65 lies primarily in axon terminals. In brain extracts, almost all GAD67 is in an active holoenzyme form, saturated with its cofactor, pyridoxal phosphate. In contrast, only about half of GAD65 (which is found in synaptic terminals) exists as active holoenzyme. We suggest that the relative levels of apo-GAD65 and holo-GAD65 in synaptic terminals may couple GABA production to neuronal activity. 相似文献
3.
Niranjala J. K. Tillakaratne Mark G. Erlander† Michael W. Collard‡ Karen F. Greif§ Allan J. Tobin¶ 《Journal of neurochemistry》1992,58(2):618-627
gamma-Aminobutyric acid (GABA) and its synthetic enzyme, glutamate decarboxylase (GAD), are not limited to the nervous system but are also found in nonneural tissues. The mammalian brain contains at least two forms of GAD (GAD67 and GAD65), which differ from each other in size, sequence, immunoreactivity, and their interaction with the cofactor pyridoxal 5'-phosphate (PLP). We used cDNAs and antibodies specific to GAD65 and GAD67 to study the molecular identity of GADs in peripheral tissues. We detected GAD and GAD mRNAs in rat oviduct and testis. In oviduct, the size of GAD, its response to PLP, its immunoreactivity, and its hybridization to specific RNA and DNA probes all indicate the specific expression of the GAD65 gene. In contrast, rat testis expresses the GAD67 gene. The GAD in these two reproductive tissues is not in neurons but in nonneural cells. The localization of brain GAD and GAD mRNAs in the mucosal epithelial cells of the oviduct and in spermatocytes and spermatids of the testis shows that GAD is not limited to neurons and that GABA may have functions other than neurotransmission. 相似文献
4.
Freeze-dried sections (14 microns thick) of retinal layers were prepared from mice with retinal degeneration (C3H strain) and control mice (C57BL strain). The weighed sections (2-30 ng dry weight) were analyzed using our microassay methods. In the control retina, gamma-aminobutyric acid (GABA) concentration and glutamate decarboxylase (GAD) activity, on a dry weight basis, increased from birth to 9 weeks of age and decreased slightly at 20 weeks. In the degenerated retina, the levels of GABA and GAD activity were higher at birth than in the control retina, and continued to increase until 20 weeks of age, at which time the GAD activity reached a markedly high level. This increase was found when the total GABA and GAD levels per retina were determined. In the normal retinal layers, GABA and GAD were confined primarily to the inner plexiform layer. In the degenerated retina, GAD activity gradually increased in the inner layers during postnatal development, but by 20 weeks the increase was most prominent in the inner part of inner nuclear layer and in the outer part of inner plexiform layer. GABA transaminase activity and its distribution were not much different in both normal and degenerated retinas during development. 相似文献
5.
The effects of gamma-aminobutyric acid (GABA) on the release of [3H]acetylcholine ([3H]ACh) were studied in synaptosomes prepared from rat hippocampus, cerebral cortex, hypothalamus, and striatum and prelabelled with [3H]choline. When synaptosomes were exposed in superfusion to exogenous GABA (0.01-0.3 mM) the basal release of newly synthesized [3H]ACh was increased in a concentration-dependent way in hippocampus, cortex, and hypothalamus nerve endings. In contrast, the release of [3H]ACh was not significantly affected by GABA in striatal synaptosomes. The effect of GABA was not antagonized significantly by bicuculline or picrotoxin. Muscimol caused only a slight not significant increase of [3H]ACh release when tested at 0.3 mM whereas, at this concentration, (-)-baclofen was totally inactive. The GABA-induced release of [3H]ACh was counteracted by SKF 89976A, SKF 100561, and SKF 100330A, three strong and selective GABA uptake inhibitors. The data suggest that, in selective areas of the rat brain, GABA causes release of [3H]ACh following penetration into cholinergic nerve terminals through a GABA transport system. 相似文献
6.
Bilateral ischemia has been shown to alter the net brain levels of energy metabolites such as ATP, phosphocreatine, glucose, and glycogen. The amino acid neurotransmitter gamma-aminobutyric acid (GABA) exerts a tonic inhibitory influence on neural activity. The present studies were designed to evaluate the influence of elevated GABA levels on the metabolic sequelae of ischemia. The GABA transaminase inhibitor gamma-vinyl-GABA (GVG; vigabatrin) was administered to Mongolian gerbils before the production of a bilateral ischemic incident. GABA levels were elevated in all regions assayed. Levels of energy metabolites were also increased, an indication of reduced energy utilization. In control animals, in the absence of GVG, 1 min of bilateral ischemia produced decreases in the levels of all metabolites. In animals pretreated with GVG, the effects of 1 min of bilateral ischemia were attenuated. These data suggest that the level of ongoing activity may affect the response to an ischemic insult. Furthermore, GVG may have a clinical indication in reducing the effect of minor ischemic incidents. 相似文献
7.
Abstract: γ-Aminobutyric acid (GABA) is synthesized in brain in at least two compartments, commonly called the transmitter and metabolic compartments, and because reglatory processes must serve the physiologic function of each compartment, the regulation of GABA synthesis presents a complex problem. Brain contains at least two molecular forms of glutamate decarboxylase (GAD), the principal synthetic enzyme for GABA. Two forms, termed GAD65 and GAD67, are the products of two genes and differ in sequence, molecular weight, interaction with the cofactor, pyridoxal 5′-phosphate (pyridoxal-P), and level of expression among brain regions. GAD65 appears to be localized in nerve terminals to a greater degree than GAD67, which appears to be more uniformly distributed throughout the cell. The interaction of GAD with pyridoxal-P is a major factor in the short-term regulation of GAD activity. At least 50% of GAD is present in brain as apoenzyme (GAD without bound cofactor; apoGAD), which serves as a reservoir of inactive GAD that can be drawn on when additional GABA synthesis is needed. A substantial majority of apoGAD in brain is accounted for by GAD65, but GAD67 also contributes to the pool of apoGAD. The apparent localization of GAD65 in nerve terminals and the large reserve of apo-GAD65 suggest that GAD65 is specialized to respond to short-term changes in demand for transmitter GABA. The levels of apoGAD and the holoenzyme of GAD (holoGAD) are controlled by a cycle of reactions that is regulated by physiologically relevant concentrations of ATP and other polyanions and by inorganic phosphate, and it appears possible that GAD activity is linked to neuronal activity through energy metabolism. GAD is not saturated by glutamate in synaptosomes or cortical slices, but there is no evidence that GABA synthesis in vivo is regulated physiologically by the availability of glutamate. GABA competitively inhibits GAD and converts holo- to apoGAD, but it is not clear if intracellular GABA levels are high enough to regulate GAD. There is no evidence of short-term regulation by second messengers. The syntheses of GAD65 and GAD67 proteins are regulated separately. GAD67 regulation is complex; it not only is present as apoGAD67, but the expression of GAD67 protein is regulated by two mechanisms: (a) by control of mRNA levels and (b) at the level of translation or protein stability. The latter mechanism appears to be mediated by intracellular GABA levels. 相似文献
8.
A comparison has been made of the abilities of several neurotoxic and nontoxic phospholipases A2 from snake venoms to inhibit the intake of γ-aminobutyric acid into synaptosomes from rat cerebral cortex. The neurotoxic phospholipases A2 inhibited GABA uptake more than the nontoxic enzymes did. However, there was a poor correlation between the measured specific enzyme activity of a phospholipase A2 and its ability to inhibit the uptake of GABA. 相似文献
9.
Synaptosomes and synaptoneurosomes were prepared from rat cerebral cortex. Comparison of the amino acid levels in the two types of organelles and of the effects of gabaculine thereon indicated that the neurosome portion of synaptoneurosomes constituted the major influencing component of the organelles. Administration to rats of inhibitors of gamma-aminobutyric acid (GABA) degradation, such as gabaculine and L-cycloserine, resulted in elevated GABA levels in synaptoneurosomes and a decrease in muscimol-stimulated Cl- up-take by the organelles. Addition of gabaculine directly to the incubation medium for the uptake assay had no effect on the Cl- transport. In contrast, administration to rats of isonicotinic acid hydrazide, an inhibitor of GABA synthesis, decreased the GABA level in synaptoneurosomes and increased the muscimol-stimulated Cl- uptake by the organelles. Although the evidence is not unequivocal, it does support the concept of GABA released from nerve endings being taken up by the postsynaptic cell, from where it exerts a regulatory influence on the functioning of the GABA receptor/ion channel complex. 相似文献
10.
Zafar U. Khan Lawrence P. Fernando Pablo Escribá Xavier Busquets Jacques Mallet Celia P. Miralles Michael Filla Angel L. De Blas 《Journal of neurochemistry》1993,60(3):961-971
Abstract: A γ-aminobutyric acidA (GABAA) receptor (GABAAR) γ2 subunit (short form) was cloned from an adult human cerebral cortex cDNA library in bacteriophage λgt11. The 261-bp intracellular loop (IL) located between M3 and M4 was amplified using the polymerase chain reaction and inserted into the expression vectors λgt11 and pGEX-3X. Both γ-galactosidase (LacZ) and glutathione-S-transferase (GST) fusion proteins containing the γ2IL were purified, and a rabbit antibody to the LacZ–γ2IL was made. The antibody reacted with the γ2IL of both LacZ and GST fusion proteins and immunoprecipitated the GABAAR/ benzodiazepine receptor (GABAAR/BZDR) from bovine and rat brain. The antibody reacted in affinity-purified GABAAR/BZDR immunoblots with a wide peptide band of 44,000–49,000 Mr. Immunoprecipitation studies with the anti-γ2IL antibody suggest that in the cerebral cortex, 87% of the GABAARs with high affinity for benzodiazepines and 70% of the GABAARs with high affinity for muscimol contain at least a γ subunit, probably a γ2. These results indicate that there are [3H]muscimol binding GABAARs that do not bind [3H]flunitrazepam with high affinity. Immunoprecipitations with this and other anti-GABAAR/BZDR antibodies indicate that the most abundant combination of GABAAR subunits in the cerebral cortex involves α1, γ2 (or other γ), and β2 and/or β3 subunits. These subunits coexist in >60% of the GABAAR/BZDRs in the cerebral cortex. The results also show that a considerable proportion (20–25%) of the cerebellar GABAAR/BZDRs is clonazepam insensitive. At least 74% of these cerebellar receptors, which likely contain α6, also contain γ2 (or other γ) subunit(s). The α1 and β2 or β3 subunits are also frequently associated with γ2 (or other γ) and α6 in these cerebellar receptors. 相似文献
11.
γ-Aminobutyric Acid-Activated 36 Cl- Influx: A Functional In Vitro Assay for CNS γ-Aminobutyric Acid Receptors of Insects 总被引:1,自引:0,他引:1
K. A. Wafford D. B. Sattelle I. Abalis A. T. Eldefrawi M. E. Eldefrawi 《Journal of neurochemistry》1987,48(1):177-180
The effects of gamma-aminobutyric acid (GABA) on the uptake of 36Cl- into a membrane microsac preparation from isolated nerve cords of the cockroach Periplaneta americana was studied. On addition of 1 microM GABA (after 4-s incubation, then rapid quenching) the influx of 36Cl- was stimulated to a level 75% above that of the control value. This stimulation was reduced by picrotoxin (100 microM), but was not significantly affected by bicuculline (100 microM). Results of 36Cl- influx experiments are in agreement with data obtained from radiolabelled ligand binding assays and electrophysiological investigations on the same tissue. The method described represents a functional in vitro assay for CNS GABA receptors of insects. 相似文献
12.
Human Brain γ-Aminobutyric Acid Levels and Seizure Control Following Initiation of Vigabatrin Therapy 总被引:1,自引:0,他引:1
Ognen A. C. Petroff Kevin L. Behar Richard H. Mattson Douglas L. Rothman 《Journal of neurochemistry》1996,67(6):2399-2404
Abstract: Vigabatrin is a novel antiepileptic drug designed to control seizures by raising brain γ-aminobutyric acid (GABA) concentrations. Seizure control is not improved significantly when the daily dose is increased beyond 50 mg/kg. Serial, in vivo measurements of GABA levels in human occipital lobe were made using 1 H NMR spectroscopy before and after the start of vigabatrin treatment. We used a 2.1-T magnetic resonance imagerspectrometer and an 8-cm surface coil to examine serially a 14-cm3 volume in the occipital lobe of 26 patients with complex partial seizures. Brain GABA content increased following the start of vigabatrin treatment up to a daily dose of 60 mg/kg. Additional increases in dose failed to increase brain GABA content further. GABA synthesis may decrease with sustained elevations of human brain GABA levels. Starting vigabatrin treatment reduced seizure frequency by >50%, from six to seven per month to three. Improved seizure control was not associated with further increases of vigabatrin dose. Increased brain GABA concentration was associated with improved seizure control. Starting vigabatrin treatment improved seizure control twofold when GABA levels increased above 1.8 mmol/kg. Further increases in brain GABA content above 2.5 mmol/kg provided less protection. Measuring occipital lobe GABA concentrations may predict improved seizure control when using antiepileptic drugs designed to increase brain GABA levels. 相似文献
13.
The intracerebroventricular injection of pyridoxal phosphate (PLP, 0.125-1.25 μmol/rat) causes epileptic seizures (4 min → 1 min) that are preventable or reversible by GABA (1 μmol/rat), by muscimol (O.025 μmol/rat), or by diazepam (1.75 μmol/rat). At the peak of PLP-induced convulsions, the activities of GAD and GABA-T in 14 regions of rat brain remained unaltered, whereas the concentrations of PLP remained elevated. The PLP-induced convulsion was blocked by DABA (10 μmol/rat) but was not altered by β-alanine (50 μmol/rat). The previous in vitro studies have shown that PLP increases the uptake of [3H]GABA into synaptosomes and inhibits the binding of [3H]GABA to synaptic membranes. These data suggest that PLP-induced convulsion is due to reduced availability of GABA to its recognition sites, rather than to alteration in the activity of GABA metabolizing enzymes, or unavailability of PLP as a coenzyme for GAD and GABA-T. Since the duration of PLP-induced epileptic seizures is short and can be prevented by GABA agonists, PLP may be used as a tool to study the nature of GABA-mediated neuroinhibition and the properties of GABA receptor sites. 相似文献
14.
The regulation of glutamate decarboxylase (GAD; EC 4.1.1.15) was studied by using cultures of cerebral cortical neurons from rat brain grown in serum-free medium. About 50% of the neurons in the cultures were gamma-aminobutyric acid (GABA)ergic as determined by two double-staining procedures. Immunoblotting experiments with four anti-GAD sera that recognize the two forms to varying degrees, demonstrated that the cultures contained the two forms of GAD that are present in rat brain (apparent molecular masses = 63 and 66 kDa). GAD activity was reduced by 60-70% when intracellular GABA levels were increased by incubating the cultures with the GABA-transaminase inhibitor gamma-vinyl-GABA for greater than 5-10 h or with 1 mM GABA itself. Neither baclofen nor muscimol (100 microM) affected GAD activity. Immunoblotting experiments showed that only the larger of the two forms of GAD (66 kDa) was decreased by elevated GABA levels. These results, together with previous results indicating that the smaller form of GAD is more strongly regulated by pyridoxal 5'-phosphate (the cofactor for GAD), suggest that the two forms of GAD are regulated by different mechanisms. 相似文献
15.
Abstract Using a radioreceptor assay, the concentration of γ -aminobutyric acid (GABA) in human cerebrospinal fluid (CSF) was found to be elevated significantly following a single deep-freeze to –70°C and thaw. Mean CSF GABA (± SD) in unfrozen CSF was 173 ± 73 pmol/ml ( n = 24). After a single deep-freeze, the mean level was 243 ± 106 pmol/ml ( p < 0.02). Subsequent freeze-thaw cycles resulted in further irregular and unpredictable elevations in CSF GABA. Mean level after two freezes was 379 ± 125 pmol/ml and after three freezes 654 ± 411 pmol/ml. These changes could result in the incorrect interpretation of results in patients suffering from neurological diseases. 相似文献
16.
Noradrenaline-induced accumulation of 3H-labeled inositol mono-, bis-, and trisphosphate (IP1, IP2, and IP3, respectively) in lithium-treated slices of rat cerebral cortex preincubated with [3H]inositol was potentiated by gamma-aminobutyric acid (GABA). However, the effect on [3H]IP2 accumulation was much greater than that on [3H]IP1 or [3H]IP3 accumulation. The principal effect of GABA on noradrenaline concentration-response curves for both [3H]IP1 and [3H]IP2 was to cause an increase in the maximal response attainable. However, whereas the EC50 for GABA potentiation of [3H]IP1 formation was 0.5 mM, the curve for the potentiation of [3H]IP2 formation showed a marked upturn at GABA concentrations of greater than 1 mM. Prazosin (1 microM) blocked the noradrenaline-induced formation of all three inositol phosphates (IPs), in both the presence and the absence of 2 mM GABA. 3H-IP formation induced by phenylephrine and methoxamine was also potentiated by GABA, and again the greatest effect was on [3H]IP2 accumulation. The ratio of [3H]IP2/[3H]IP1 formed in response to 100 microM noradrenaline was increased by 2 mM GABA at all times from 10 to 60 min, whereas the ratio of [3H]IP3/[3H]IP1 was little altered. The effect of GABA was not mimicked by the GABAA agonists isoguvacine and 3-aminopropanesulphonic acid and was not blocked by bicuculline methiodide. (-)-Baclofen, a GABAB agonist, did produce some stimulation of the response to noradrenaline, but to a much lesser extent than GABA. Of the agents tested, nipecotic acid came nearest to reproducing the effect of GABA, in that the major effect was on [3H]IP2 accumulation. The effects of 2 mM GABA and 2 mM nipecotic acid were not additive. GABA potentiation of noradrenaline-induced 3H-IP formation was still apparent in the absence of Li+, but the increase of [3H]IP2 content was less than that of [3H]IP1 content. 相似文献
17.
gamma-Aminobutyric acidB (GABAB) receptor recognition sites that inhibit cyclic AMP formation, open potassium channels, and close calcium channels are coupled to these effector systems by guanine nucleotide binding proteins (G proteins). These G proteins are ADP-ribosylated by islet-activating protein (IAP), also known as pertussis toxin. This process prevents receptor coupling to these G proteins. In slices of cerebral cortex and hippocampus from rat, stimulation of GABAB receptors with baclofen, a receptor agonist, also potentiates the accumulation of cyclic AMP stimulated by beta-adrenergic agonists. It was unknown whether those GABAB receptors that potentiate the beta-adrenergic response were also sensitive to IAP. IAP was injected intracerebroventricularly into rats to ADP-ribosylate IAP-sensitive G proteins. Four days after the IAP injection, 38% and 52% of these G proteins from cerebral cortex and hippocampus, respectively, were ADP-ribosylated by the IAP injection. In slices of both structures prepared from IAP-treated rats, the GABAB receptor-mediated potentiation of the beta-adrenergic receptor response was attenuated. Thus, many GABAB receptor-mediated responses are coupled to IAP-sensitive G proteins. 相似文献
18.
Abstract: Some data on the concentration range of response and the concentration for half-response (EC50 ) of γ-aminobutyric acid (GABA) for the GABAA receptor are reviewed and compared. An analysis of the 36 CI− flux assay demonstrates that both the EC50 and the slope of a Hill plot depend on the ion influx or efflux assay time. The effects of depletion of the 36 CI− concentration gradient during the assay and of receptor desensitization on the result for a range of assay times are considered. The EC50 can be decreased by orders of magnitude by increasing the assay time. The EC50 measured in a finite time is less than the half-response concentration for the response(s) of the receptor. The extent of this difference depends on the receptor concentration per internal volume. The maximal decrease of EC50 depends on the rate of receptor desensitization. The computer simulations showed that a GABAA receptor with a half-response concentration of 100 μ M GABA can give 36 CI− flux measurements with an EC50 value 100-fold lower. 相似文献
19.
gamma-Aminobutyric acid (GABA) synthesis was studied in rat brain synaptosomes by measuring the increase of GABA level in the presence of the GABA-transaminase inhibitor gabaculine. The basal rate of synaptosomal GABA synthesis in glucose-containing medium (25.9 nmol/h/mg of protein) was only 3% of the maximal activity of glutamate decarboxylase (GAD; 804 +/- 83 nmol/h/mg of protein), a result indicating that synaptosomal GAD operates at only a small fraction of its catalytic capacity. Synaptosomal GABA synthesis was stimulated more than threefold by adding 500 microM glutamine. Glutamate also stimulated GABA synthesis, but the effect was smaller (1.5-fold). These results indicate that synaptosomal GAD is not saturated by endogenous levels of its substrate, glutamate, and account for part of the unused catalytic capacity. The greater stimulation of GABA synthesis by glutamine indicates that the GAD-containing compartment is more accessible to extrasynaptosomal glutamine than glutamate. The strong stimulation by glutamine also shows that the rates of uptake of glutamine and its conversion to glutamate can be sufficiently rapid to support GABA synthesis in nerve terminals. Synaptosomes carried out a slow net synthesis of aspartate in glucose-containing medium (7.7 nmol/h/mg of protein). Aspartate synthesis was strongly stimulated by glutamate and glutamine, but in this case the stimulation by glutamate was greater. Thus, the larger part of synaptosomal aspartate synthesis occurs in a different compartment than does GABA synthesis. 相似文献
20.
B. W. McCarthy U. R. Gomes A. C. Neethling B. C. Shanley J. J. F. Taljaard L. Potgieter J. T. Roux 《Journal of neurochemistry》1981,36(4):1406-1408
Abstract: γ-Aminobutyric acid (GABA) concentration was determined in cerebrospinal fluid (CSF) of acute and chronic schizophrenic patients, in persons with psycho-organic or personality disorders, and in nonpsychiatric controls. The mean CSF GABA level in the chronic schizophrenic patients was found to be significantly higher than in any of the other groups. No other statistically significant differences were found. Statistical analysis revealed that the elevated CSF GABA concentration in the chronic schizophrenic patients was unlikely to be caused by medication. These results are interpreted as evidence for possible primary or secondary GABAergic overactivity in the brain in chronic schizophrenia. 相似文献