首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two Hawaiian isolates of Steinernema feltiae MG-14 and Heterohabditis indica MG-13, a French isolate of S. feltiae SN, and a Texan isolate of S. riobrave TX were tested for their efficacy against the root-knot nematode, Meloidogyne javanica, in the laboratory and greenhouse. Experiments were conducted to investigate the effects of treatment application time and dose on M. javanica penetration in soybean, and egg production and plant development in tomato. Two experiments conducted to assess the effects of entomopathogenic nematode application time on M. javanica penetration demonstrated that a single application of 10⁴ S. feltiae MG-14 or SN infective juveniles per 100 cm³ of sterile soil, together with 500 (MG-14) or 1,500 (SN) second-stage juveniles of M. javanica, reduced root penetration 3 days after M. javanica inoculation compared to that of a water treatment. Entomopathogenic nematode infective juveniles applied to assess the effects on M. javanica egg production did not demonstrate a significant reduction compared to that of the water control treatment. There was no dose response effect by Steinernema spp. On M. javanica root penetration or egg production. Steinernema spp. did not affect the growth or development of M. javanica-infected plants, but H. indica MG-13-treated plants had lower biomass than untreated plants infected with M. javanica. Infective juveniles of S. riobrave TX, S. feltiae SN, and MG-14 but not those of H. indica MG-13 were found inside root cortical tissues of M. javanica-infected plants. Entomopathogenic nematode antagonism to M. javanica on soybean or tomato was insufficient in the present study to provide a consistent level of nematode suppression at the concentrations of infective juveniles applied.  相似文献   

2.
The interspecific interactions of Meloidogyne javanica with races 1, 2, 3, and 4 of M. incognita on tomato were determined. Impacts of the interactions on fecundity and morphometrics of females were also examined. Mutually inhibitory interactions occurred between M. javanica and the races of M. incognita, but the negative interactions did not reflect in plant growth. Numbers of root galls, egg masses, mature females, total population, fecundity, and reproduction factor declined in concomitant treatments, but the morphometrics of the females remained unaltered. In general, mutual suppressive effects in all parameters were smaller for M. javanica than M. incognita, but some variations occurred among the races of M. incognita. Race 2 appeared to be more competitive than other races. The interaction between the species was not intense; therefore, the species coexist in mixed populations in agricultural fields.  相似文献   

3.
A polymerase chain reaction (PCR) method for discriminating Meloidogyne incognita, M. arenaria, M. javanica, M. hapla, and M. chitwoodi was developed. Single juveniles were ruptured in a drop of water and added directly to a PCR reaction mixture in a microcentrifuge tube. Primer annealing sites were located in the 3'' portion of the mitochondrial gene coding for cytochrome oxidase subunit II and in the 16S rRNA gene. Following PCR amplification, fragments of three sizes were detected. The M. incognita and M. javanica reactions produced a 1.7-kb fragment; the M. arenaria reaction, a 1.1-kb fragment; and the M. hapla and M. chitwoodi reactions resulted in a 0.52-kb fragment. Digestion of the amplified product with restriction endonucleases allowed discrimination among species with identically sized amplification products. Dra I digestions of the 0.52-kb amplification product produced a characteristic three-banded pattern in M. chitwoodi, versus a two-banded pattern in M. hapla. Hinf I digestion of the 1.7-kb fragment produced a two-banded pattern in M. javanica, versus a three-banded pattern in M. incognita. Amplification and digestion of DNA from juveniles from single isolates of M. marylandi, M. naasi, and M. nataliei indicated that the diagnostic application of this primer set may extend to less frequently encountered Meloidogyne species.  相似文献   

4.
Rates of penetration of Meloidogyne incognita, M. arenaria, and M. javanica into tobacco cultivars NC2326 (susceptible to all three species) and K399 (resistant to M. incognita) and a breeding line that had been selected for resistance to M. incognita were compared. Meloidogyne incognita penetrated NC2326 rapidly during the first 24 hours after inoculation. Numbers of M. incognita continued to increase gradually through the 14-day experiment. Higher numbers of M. incognita were observed in the roots of K399 during the first 24 hours than were observed in NC2326. The number of M. incognita in K399 peaked 4 days after inoculation, then declined rapidly as the nematodes that were unable to establish a feeding site left the root or died. Numbers of M. incognita in the breeding line followed the same pattern as with K399, but in lower numbers. Numbers of M. arenaria showed little difference between cultivars until 7 days after inoculation, then numbers increased in NC2326. Numbers of M. javanica fluctuated in all cultivars, resulting in patterns of root population different from those observed for M. incognita or M. arenaria. Resistance to M. incognita appears to be expressed primarily as an inability to establish a feeding site rather than as a barrier to penetration. Some resistance to M. arenaria may also be present in K399 and the breeding line.  相似文献   

5.
Gall size and rates of ethylene production by various hosts infected with Meloidogyne javanica and by excised tomato root cultures infected with M. javanica or M. hapla were measured. Infection with M. javanica increased the rate of ethylene production in dicotyledonous plants (cabbage, pea, carrot, cucumber, carnation, and tomato), but not in infected monocotyledonous plants (corn, wheat, and onion). Nematode infection induced large galls on roots of dicotyledonous, but not monocotyledonous, plants. Excised tomato roots in culture infected with M. javanica produced ethylene at high rates and formed large galls, whereas roots infected with M. hapla produced ethylene at low rates and induced smaller galls.  相似文献   

6.
The effects of preplanted marigold on tomato root galling and multiplication of Meloidogyne incognita, M. javanica, M. arenaria, and M. hapla were studied. Marigold cultivars of Tagetes patula, T. erecta, T. signata, and a Tagetes hybrid all reduced galling and numbers of second-stage juveniles in subsequent tomato compared to the tomato-tomato control. All four Meloidogyne spp. reproduced on T. signata ''Tangerine Gem''. Several cultivars of T. patula and T. erecta suppressed galling and reproduction of Meloidogyne spp. on tomato to levels lower than or comparable to a fallow control. Phytotoxic effects of marigold on tomato were not observed. Several of the tested marigold cultivars are ready for full-scale field evaluation against Meloidogyne spp.  相似文献   

7.
Root invasion, root galling, and fecundity of Meloidogyne javanica, M. arenaria, and M. incognita on tobacco was compared in greenhouse and controlled environment experiments. Significantly more M. javanica than M. arenaria or M. incognita larvae were found in tobacco roots at 2, 4, and 6 d after inoculation. Eight days after inoculation there were significantly more M. arenaria and M. javanica than M. incognita larvae. Ten days after inoculation no significant differences were found among the three Meloidogyne species inside the roots. Galls induced by a single larva or several larvae of M. javanica were significantly larger than galls induced by M. incognita: M. arenaria galls were intermediate in size. Only slight differences in numbers of egg masses or numbers of eggs produced by the three Meloidogyne species were observed up to 35 d after inoculation.  相似文献   

8.
The host suitability of five zucchini and three cucumber genotypes to Meloidogyne incognita (MiPM26) and M. javanica (Mj05) was determined in pot experiments in a greenhouse. The number of egg masses (EM) did not differ among the genotypes of zucchini or cucumber, but the eggs/plant and reproduction factor (Rf) did slightly. M. incognita MiPM26 showed lower EM, eggs/plant, and Rf than M. javanica Mj05. Examination of the zucchini galls for nematode postinfection development revealed unsuitable conditions for M. incognita MiPM26 as only 22% of the females produced EM compared to 95% of the M. javanica females. As far as cucumber was concerned, 86% of the M. incognita and 99% of the M. javanica females produced EM, respectively. In a second type of experiments, several populations of M. arenaria, M. incognita, and M. javanica were tested on zucchini cv. Amalthee and cucumber cv. Dasher II to assess the parasitic variation among species and populations of Meloidogyne. A greater parasitic variation was observed in zucchini than cucumber. Zucchini responded as a poor host for M. incognita MiPM26, MiAL09, and MiAL48, but as a good host for MiAL10 and MiAL15. Intraspecific variation was not observed among the M. javanica or M. arenaria populations. Cucumber was a good host for all the tested populations. Overall, both cucurbits were suitable hosts for Meloidogyne but zucchini was a poorer host than the cucumber.  相似文献   

9.
Studies were conducted to determine the potential of two avermectin compounds, abamectin and emamectin benzoate, for controlling plant-parasitic nematodes when applied by three methods: foliar spray, root dip, and pseudostem injection. Experiments were conducted against Meloidogyne incognita on tomato, M. javanica on banana, and Radopholus similis on banana. Foliar applications of both avermectins to banana and tomato were not effective for controlling any of the nematodes evaluated. Root dips of banana and tomato were moderately effective for controlling M. incognita on tomato and R. similis on banana. Injections (1 ml) of avermectins into banana pseudostems were effective for controlling M. javanica and R similis, and were comparable to control achieved with a conventional chemical nematicide, fenamiphos. Injections of 125 to 2,000 μg/plant effectively controlled one or both nematodes on banana; abamectin was more effective than emamectin benzoate for controlling nematodes.  相似文献   

10.
In a rapeseed-squash cropping system, Meloidogyne incognita race 1 and M. javanica did not enter, feed, or reproduce in roots of seven rapeseed cultivars. Both nematode species reproduced at low levels on roots of the third crop of rapeseed. Reproduction of M. incognita and M. javanica was high on squash following rapeseed, hairy vetch, and fallow. The application of fenamiphos suppressed (P = 0.05) root-gall indices on squash following rapeseed, hairy vetch, and fallow; and on Dwarf Essex and Cascade rapeseed, but not Bridger and Humus rapeseed in 1987. The incorporation of 30-61 mt/ha green biomass of rapeseed into the soil 6 months after planting did not affect the population densities of Criconemella ornata, M. incognita, M. javanica, Pythium spp., Rhizoctonia solani AG-4; nor did it consistently increase yield of squash. Hairy vetch supported larger numbers of M. incognita and M. javanica than rapeseed cultivars or fallow. Meloidogyne incognita and M. javanica survived in fallow plots in the absence of a host from October to May each year at a level sufficient to warrant the use of a nematicide to manage nematodes on the following susceptible crop.  相似文献   

11.
Evolutionary relationships based on nucleotide variation within the D3 26S rDNA region were examined among acollection of seven Meloidogyne hapla isolates and seven isolates of M. arenaria, M. incognita, and M. javanica. Using D3A and D3B primers, a 350-bp region was PCR amplified from genomic DNA and double-stranded nucleotide sequence obtained. Phylogenetic analyses using three independent clustering methods all provided support for a division between the automictic M. hapla and the apomictic M. arenaria, M. incognita, and M. javanica. A nucleotide sequence character distinguishing M. hapla from the three apomictic species was a 3-bp insertion within the interior of the D3 region. The three apomictic species shared a common D3 haplotype, suggesting a recent branching. Single M. hapla individuals contained two different haplotypes, differentiated by a Sau3AI restriction site polymorphism. Isolates of M. javanica appeared to have only one haplotype, while M. incognita and M. arenaria maintained more than one haplotype in an isolate.  相似文献   

12.
Penetration of Crotalaria juncea (PI 207657 and cv. Tropic Sun) Dolichos lablab cv. Highworth, and Sesamum indicum by juveniles (J2) of Meloidogyne javanica was assessed to investigate the mechanism by which these plants may reduce nematode numbers in the field. Growth chamber experiments were conducted at 25 C, with vials containing 90 g sand infested with 450 J2; tomato (UC 204 C) was included as a susceptible host. Fifteen days after inoculation, roots were stained and the nematodes within stained roots were counted. Both C. juncea lines were highly resistant to penetration, as they contained significantly fewer nematodes per cm of root and per root system than the other plants. Although containing more nematodes per cm of root than C. juncea, S. indicum and D. lablab had significantly fewer nematodes per root system and per cm of root than tomato. Roots were significantly longer in the plants with the lowest nematode penetration. Although C. juncea, D. lablab, and S. indicum may have potential utility as cover or rotation crops in soil infested with M. javanica, further quantitative information on the reproduction of M. javanica and other nematodes in these plants is needed.  相似文献   

13.
Resistance to the southern root-knot nematode, Meloidogyne incognita races 1 and 3, has been identified, incorporated, and deployed into commercial cultivars of tobacco, Nicotiana tabacum. Cultivars with resistance to other economically important root-knot nematode species attacking tobacco, M. arenaria, M. hapla, M. javanica, and other host-specific races of M. incognita, are not available in the United States. Twenty-eight tobacco genotypes of diverse origin and two standard cultivars, NC 2326 (susceptible) and Speight G 28 (resistant to M. incognita races 1 and 3), were screened for resistance to eight root-knot nematode populations of North Carolina origin. Based on root gall indices at 8 to 12 weeks after inoculation, all genotypes except NC 2326 and Okinawa were resistant to M. arenaria race 1, and races 1 and 3 of M. incognita. Except for slight root galling, genotypes resistant to M. arenaria race 1 responded similarly to races 1 and 3 of M. incognita. All genotypes except NC 2326, Okinawa, and Speight G 28 showed resistance to M. javanica. Okinawa, while supporting lower reproduction of M. javanica than NC 2326, was rated as moderately susceptible. Tobacco breeding lines 81-R-617A, 81-RL- 2K, SA 1213, SA 1214, SA 1223, and SA 1224 were resistant to M. arenaria race 2, and thus may be used as sources of resistance to this pathogen. No resistance to M. hapla and only moderate resistance to races 2 and 4 of M. incognita were found in any of the tobacco genotypes. Under natural field infestations of M. arenaria race 2, nematode development on resistant tobacco breeding lines 81-RL-2K, SA 1214, and SA 1215 was similar to a susceptible cultivar with some nematicide treatments; however, quantity and quality of yield were inferior compared to K 326 plus nematicides.  相似文献   

14.
Expression of resistance to Meloidogyne incognita and M. javanica from Aegilops squarrosa was studied in a synthetic allohexaploid produced from Triticum turgidum var. durum cv. Produra and Ae. squarrosa G 3489. The reproductive rate of different races of M. incognita and M. javanica, expressed in eggs per gram of fresh root, was low (P < 0.05) on the synthetic allohexaploid and the resistant parent, Ae. squarrosa G 3489, compared with different bread and durum wheat cultivars. Reproduction of race 2 and race 3 of M. incognita and an isolate of M. javanica was studied on the synthetic allohexaploid and seven cultivars of T. aestivum: Anza, Coker 747, Coker 68-15, Delta Queen, Double Crop, McNair 1813, and Southern Bell. The latter six cultivars are grown in the southeastern United States and reportedly were resistant to M. incognita. Significant differences (P < 0.05) were detected in nematode reproduction on the seven bread wheat cultivars. Reproduction of M. incognita race 3 and M. javanica was highest on Anza. Reproductive rates on the six southeastern United States bread wheat cultivars varied both within and among nematode isolates. The lowest reproductive rates of the three root-knot isolates were detected in the synthetic allohexaploid.  相似文献   

15.
Resistance of pepper species (Capsicum annuum, C. baccatum, C. chinense, C. chacoense, and C. frutescens), cultivars and accessions to the root-knot nematodes Meloidogyne incognita race 2 and M. javanica, and their graft compatibility with commercial pepper varieties as rootstocks were evaluated in growth chamber and greenhouse experiments. Most of the plants tested were highly resistant to M. javanica but susceptible to M. incognita. Capsicum annuum AR-96023 and C. frutescens accessions as rootstocks showed moderate and relatively high resistance to M. incognita, respectively. In M. incognita-infested soil in a greenhouse, AR-96023 supported approximately 6-fold less nematode eggs per gram root and produced about 2-fold greater yield compared to a nongrafted commercial variety. The commercial variety grafted on AR-96023 produced a yield as great as the non-grafted variety in the root-knot nematode-free greenhouse. Some resistant varieties and accessions used as rootstocks produced lower yields (P < 0.01) than that of the non-grafted variety in the noninfested greenhouse. Use of rootstocks with nematode-resistance and graft compatibility may be effective for control of root-knot nematodes on susceptible pepper.  相似文献   

16.
A disease complex involving Meloidogyne incognita and Rhizoctonia solani was associated with stunting of grapevines in a field nursery. Nematode reproduction was occurring on both susceptible and resistant cultivars, and pot experiments were conducted to determine the virulence of this M. incognita population, and of M. javanica and M. hapla populations, to V. vinifera cv. Colombard (susceptible) and to V. champinii cv. Ramsey (regarded locally as highly resistant). The virulence of R. solani isolates obtained from roots of diseased grapevines also was determined both alone and in combination with M. incognita. Ramsey was susceptible to M. incognita (reproduction ratio 9.8 to 18.4 in a shadehouse and heated glasshouse, respectively) but was resistant to M. javanica and M. hapla. Colombard was susceptible to M. incognita (reproduction ratio 24.3 and 41.3, respectively) and M. javanica. Shoot growth was suppressed (by 35%) by M. incognita and, to a lesser extent, by M. hapla. Colombard roots were more severely galled than Ramsey roots by all three species, and nematode reproduction was higher on Colombard. Isolates of R. solani assigned to putative anastomosis groups 2-1 and 4, and an unidentified isolate, colonized and induced rotting of grapevine roots. Ramsey was more susceptible to root rotting than Colombard. Shoot growth was inhibited by up to 15% by several AG 4 isolates and by 20% by the AG 2-1 isolate. AG 4 isolates varied in their virulence. Root rotting was higher when grapevines were inoculated with both M. incognita and R. solani and was highest when nematode inoculation preceded the fungus. Shoot weights were lower when vines were inoculated with the nematode 13 days before the fungus compared with inoculation with both the nematode and the fungus on the same day. It was concluded that both the M. incognita population and some R. solani isolates were virulent against both Colombard and Ramsey, and that measures to prevent spread in nursery stock were therefore important.  相似文献   

17.
The host-parasite relationships of asparagus and Meloidogyne spp. were examined under greenhouse and microplot conditions. Meloidogyne species and races differed greatly in their ability to reproduce on asparagus seedlings. Meloidogyne hapla generally failed to reproduce, and M. javanica, M. arenaria race 1, and M. incognita race 3 reproduced poorly, with a reproduction factor (Rf = final population/initial population) usually < 1.0. Only M. arenaria race 2 and M. incognita races 1 and 4 reproduced consistently on all asparagus cultivars tested (Rf typically 1-11). No effect of M. incognita race 4 on host growth was detected. Meloidogyne arenaria race 2 and M. incognita race 1 had slight negative effects (5-10%) on plant and root growth.  相似文献   

18.
Treatment of second-stage juveniles (J2) of Meloidogyne incognita race 1 and M. javanica with soybean agglutinin, Concanavalin A, wheat germ agglutinin, Lotus tetragonolobus agglutinin, or Limax flavus agglutinin or the corresponding competitive sugars for each of these lectins did not alter normal root tissue response of soybean cultivars Centennial and Pickett 71 to infection by M. incognita race 1 or M. javanica. Giant cells were frequently induced in Centennial and Pickett 71 roots 5 and 20 days after inoculation of roots with untreated J2 of a population of M. incognita race 3. Treatment of J2 of M. incognita race 3 with the lectins or carbohydrates listed above caused Centennial, but not Pickett 71, root tissue to respond in a hypersensitive manner to infection by M. incognita race 3. Penetration of soybean roots by J2 of Meloidogyne spp. was strongly inhibited in the presence of 0.1 M sialic acid. Treatment of J2 with sialic acid was not lethal to nematodes, and the inhibitory activity of sialic acid was apparently not caused by low pH. These results suggest that carbohydrates may influence plant-nematode interactions.  相似文献   

19.
Two grape cultivars, susceptible French Colombard and tolerant Rubired, and four nematodes, Meloidogyne incognita, Pratylenchus vulnus, Tylenchulus semipenetrans, and Xiphinema index, were used to quantify the equilibrium between root (R) and shoot (S) growth. Root and shoot growth of French Colombard was retarded by M. incognita, P. vulnus, and X. index but not by T. semipenetrans. Although the root growth of Rubired was limited by all the nematodes, the shoot growth was limited only by X. index. The R:S ratios of Rubired were higher than those of French Colombard. The reduced R:S ratios of Rubired were primarily an expression of reduction in root systems without an equal reduction in shoot growth, whereas in French Colombard the reduced R:S ratios were due to a reduction in both shoot growth and root growth and to a greater reduction in root growth than shoot growth. All nematodes reproduced equally well on both cultivars. Both foliage and root growth of French Colombard were significantly reduced by M. incognita and P. vulnus. Nematodes reduced the shoot length by reducing the internode length. Accumulative R:S ratios in inoculated plants were significantly smaller than those in controls in all nematode treatments but not at individual harvest dates. Bud break was delayed by X. index and was initiated earlier by P. vulnus and M. incognita. All buds in nematode treatments were less vigorous than in controls.  相似文献   

20.
Populations of Pratylenchus brachyurus on cotton were increased significantly in the presence of either Meloidogyne incognita or M. arenaria.This occurred with either simultaneous inoculation or prior invasion by M. incognita. P. brachyurus penetrated cotton roots previously invaded by, or simultaneously inoculated with, M. incognita, as well as, or better than, in the absence of M. incognita. Prior invasion by M. incognita, however, suppressed P. brachyurus populations on tomato, while it had no effect on alfalfa and tobacco. Populations of M. incognita on cotton were generally inhibited by the presence of P. brachyurus. Simultaneous inoculation with, or previous invasion by, P. brachyurus also inhibited root penetration by M. incognita. These findings emphasize the importance of host susceptibility in the study of concomitant nematode populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号