首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An isolate of Bursaphelenchus xylophilus from Pinus sylvestris in Missouri infected and reproduced in 2-3-year-old seedlings of P. sylvestris and to some extent in seedlings of P. nigra. Wilting, however, occurred only in P. sylvestris. B. xylophilus isolated from P. strobus in Vermont infected and reproduced only in P. strobus seedlings. P. taeda seedlings were resistant to both of these isolates. Phytotoxin production was seen only in susceptible seedling species-nematode combinations. Significant water loss occurred only in those seedlings that were wilted because of infection by a compatible nematode isolate. Our results suggest that these isolates are pathotypes of B. xylophilus.  相似文献   

2.
Bursaphelenchus xylophilus isolate MPSy-1av was subcultured from pathotype MPSy-1. MPSy-1av is nonparasitic and does not establish in Pinus sylvestris, P. strobus, P. nigra, or P. taeda. This isolate produces ethanol as an end product of carbohydrate metabolism, whereas its parent pathotype, MPSy-1, does not. Alcohol dehydrogenase activity was easily detectable in homogenates of MPSy-1av but barely detectable in some homogenates of MPSy-1. Genomic differences were seen between MPSy-1 and M PSy-1av by restriction endonuclease analysis of total nematode DNA, and hybridization of DNA fragments to the alcohol dehydrogenase gene from Drosophila.  相似文献   

3.
Pines responded to inoculation with Bursaphelenchus xylophilus by changes in reducing and nonreducing carbohydrate concentrations dependent on the pine species and the pathotype of B. xylophilus with which the trees were inoculated. Carbohydrate concentrations, in compatible pine-nematode pathotype combinations, decreased initially after inoculation and then increased slightly before decreasing to approximately 10% of the control levels as the seedlings wilted. In compatible nematode pathotype-pine species combinations, carbohydrate concentrations decreased and then increased as the nematode population densities declined.  相似文献   

4.
To determine the effect of soil environment on the life stages and total numbers of Bursaphelenchus xylophilus, nematode-infested wood chips alone and mixed with soil were incubated at 12 and 20 C. Nematodes were extracted at 2-week intervals for 12 weeks. Numbers of nematodes and percentage of third-stage dispersal larvae were greater at 12 C and in chips without soil. Percentage of juveniles of the propagative cycle was greater at 20 C and in chips with soil. Although B. xylophilus survived in chips with soil for 12 weeks, nematode numbers and life stage percentages changed little over time. To determine if B. xylophilus was capable of infecting wounded roots, infested and uninfested chips were mixed with soil in pots with white and Scots pine seedlings. Trees were maintained at 20 and 30 C and harvested at mortality or after 12 weeks. Only seedlings treated with infested chips contained nematodes. In field experiments, planted seedlings were mulched with infested chips to determine if nematodes would invade basal stem wounds. Among these trees, Scots pine was more susceptible than white or red pines to infection and mortality.  相似文献   

5.
Treatment of 3-year-old Scots, white, and Austrian pine seedlings with copper sulfate or lead acetate significantly affected energy homeostasis and oleoresin production in the seedlings but did not induce wilting of the seedlings. Inoculation of copper sulfate-treated or lead acetate-treated white, Scots, and Austrian pine seedlings with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1, caused a significant increase in oleoresin production, stressed energy homeostasis, and induced rapid wilting of the seedlings. Scots pine lost tolerance and Austrian pine lost resistance to VPSt-1 after the seedlings were treated with either copper sulfate or lead acetate. These results suggest that environmental pollution may significantly affect susceptibility of pines to B. xylophilus and may have a role in establishment of this nematode in uninfested areas.  相似文献   

6.
Bags of Pinus strobus wood chips with moisture contents of 38, 92, 164, and 217% (oven dry weight) were inoculated with Bursaphelenchus xylophilus and incubated at 30 C in order to determine the effect of wood moisture on nematode population development. Nematodes were extracted after 2, 4, 8, and 12 weeks. Population levels were greatest in wood chips with a moisture content of 38% and decreased successively with each higher moisture content. In chips with the three lower moisture contents, populations peaked at 2 weeks, but at 217% moisture, they peaked at 8 weeks. By 12 weeks, nematode populations had declined in wood chips with 92 and 164% moisture contents. The fungi most frequently isolated from the wood chips were Alternaria, Fusarium, Gliocladium, Graphium, Penicillium, Trichoderma, and Mucorales.  相似文献   

7.
Populations of three isolates of Bursaphelenchus xylophilus, the pinewood nematode, and one of B. mucronatus were treated with three cryoprotectants at -70 C for 24 hours followed by deep freezing at -180 C in liquid nitrogen for different periods of time. A solution of 15% glycerol, 35% buffer S, and 50% M9, or 1% aqueous solution of dimethylsulfoxide (DMSO), or a mixture of 60% M9 and 40% S buffer were used as cryoprotectants. A significantly larger number of juveniles than adults survived deep freezing. Significantly more nematodes were motile after cryopreservation in the 15% glycerol-S-M9 soludon than in the M9-S buffer solution or the DMSO aqueous solution. When cryopreserved nematodes that had been treated with glycerol solution were plated onto Botrytis cinerea, they reproduced rapidly over several generations. Cryopreserved nematodes were as pathogenic as untreated nematodes to Scots pines.  相似文献   

8.
White, Scots, and Austrian 3-year-old pine seedlings were treated with conditions simulating acid rain and inoculated with the white pine specific pathotype of Bursaphelenchus xylophilus, VPSt-1. Oleoresin concentration increased slightly and carbohydrate concentration decreased in all seedlings treated with simulated acid rain (SAR). The changes were significantly increased after inoculation of SAR-treated white and Scots pine seedlings with VPSt-1. Wilting was delayed and nematode reproduction decreased in SAR-treated white pine seedlings inoculated with VPSt-1. SAR-treated Austrian pine seedlings were resistant to VPSt-1, but SAR-treated Scots pine seedlings lost tolerance to VPSt-1 and wilted 50-60 days after inoculation.  相似文献   

9.
Seven-month-old Scots pine seedlings were inoculated with water or culture filtrate (controls), with 10,000, or 20,000 (experiment 1), and with 2,500 (experiment 2) Bursaphelenchus xylophilus B.C. isolate nematodes and maintained under defined experimental conditions. Controls did not develop pine wilt disease over a 2-month period. In experiment 1, less than 50% of the inoculum was recovered from the nematode-inoculated seedlings in the first 48 hours, after which the nematode population of both treatments increased exponentially resulting in pine death and approximately equal populations at 216 hours after inoculation. In the second experiment, plant mortality, which was always preceded by 2-3 days of chlorosis and associated stem vascular necrosis, first occurred 14 days after inoculation. The nematode population increased until about day 40 after inoculation and declined thereafter. Nematodes extracted from the roots 2 weeks after inoculation accounted for ca.15% of the total number of nematodes per pine. The study indicates that the rate of nematode reproduction is a factor in pine wilt disease. However, the lack of a linear correlation between the number of nematodes and the timing of pine mortality suggests that the timing of pine death may also depend on the location of nematode damage to the host tissue.  相似文献   

10.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

11.
Transmission of pinewood nematode through Monochamus carolinensis oviposition wounds was documented. Nematode transmission was measured as the average number of nematodes isolated per oviposition wound excavated and also as the percentage of oviposition wounds from which nematodes were isolated. The influence of three factors that might affect nematode transmission was investigated: age of the beetle vector, number of nematodes carried per beetle, and egg deposition in the oviposition wound. Only the number of nematodes carried by the beetle was found to have a significant effect on transmission. Nematodes were transmitted more frequently and in slightly greater numbers by beetles carrying more nematodes. The influence of pinewood on nematode exit from beetles were investigated by comparing nematode exit from beetles placed over pine chips with those placed over distilled water. Nematodes exited in greater numbers and at a higher frequency from beetles over pine chips than from beetles over distilled water. Apparently, the nematodes are able to detect a factor from the pine chips that promotes their exit from the beetles.  相似文献   

12.
The effect of wound, wound + water, wound + Bursaphelenchus xylophilus culture filtrate, or wound + lethal B. xylophilus doses on the assimilation and translocation of ¹⁴C by 8-month-old Pinus sylvestris seedlings was tested. In two separate experiments, pine seedlings were exposed to 28.35 μCi of ¹⁴CO₂ for 20 minutes below or above (to the pine shoot leader) the point of nematode inoculation. After 2 and 4 hours of dark adaptation, 80% ethanol soluble ¹⁴C tissue extracts were determined by liquid scintillation counting. Nematode infection significantly (P = 0.05) decreased ¹⁴C assimilation. Treatments translocated less than 6% of the total amount of the fixed ¹⁴C and translocation generally decreased with increasing size of nematode inoculum. However, infected pines translocated a greater proportion of the amount of ¹⁴C fixed per gram of exposed nematode-plant tissue than did the control pines. The lower levels of photoassimilate entering the plant system probably resulted in a reduced metabolic capacity in B. xylophilus-infected pine seedlings. The effect on photosynthesis could be one of the key factors leading to death of pines through starvation, and it is possible that it was preceded by an effect on related physiological processes such as water uptake.  相似文献   

13.
Bursaphelenchus xylophilus and its insect vector, Monochamus carolinensis, both develop within rapidly degrading xylem tissue of dying or recently cut trees of Pinus spp. The influence of Monochamus development on B. xylophilus dispersal stage formation was investigated. Nearly all nematodes extracted from wood surrounding beetle galleries were third-stage dispersal juveniles (J3). Formation of fourth-stage dispersal juveniles (J4) occurred almost exclusively in the presence of M. carolinensis late pupae and callow adults. This pattern was observed with live insects in naturally formed galleries, diet-reared insects in artificial galleries, and pulverized insects in artificial galleries. The molt from J3 to J4 appeared to be related to adult eclosion in M. carolinensis. We hypothesize that a genus-specific substance(s) associated with Monochamus adult eclosion ensures the Monochamus-B. xylophilus association.  相似文献   

14.
Red pines Pinus resinosa in Garrett and Allegany counties, Maryland, were examined during 1982-84 to determine distribution of the pinewood nematode, Bursaphelenchus xylophilus, within and among trees. Approximately 25-year-old (younger) and 47-year-old (older) trees were subdivided into the following categories: 1) trees with mostly green needles; 2) trees with mostly reddish-brown needles; 3) trees lacking needles but with bark intact; 4) trees lacking both needles and bark; and 5) trees with chlorotic, bleached-green needles. Bursaphelenchus xylophilus was found infecting 68% of younger red pines and 77% of older red pines. Nematodes were not evenly distributed in trees within any given tree decadence category or in trees of the same age. Nematodes were recovered from 20% of wood samples from trunks and primary and secondary branches in younger pines and from 15 % of older red pines. On the basis of tree decadence category, the highest incidence of infection in younger trees (31%) was in bleached-green needled trees (category 5), whereas in older trees the highest infection (25%) occurred in green needled trees (category 1). At both sites trunks were infected more often than branches.  相似文献   

15.
The influence of temperature on reproduction and movement was examined for seven geographic isolates of Bursaphelenchus xylophilus, three of B. mucronatus, and two of their interspecific hybrids. All nematode isolates tended to be more active and fecund the higher the temperature, with the isolates of B. xylophilus reaching a reproductive peak at higher temperatures than isolates of B. mucronatus. Most isolates of B. xylophilus and B. mucronatus did not produce significantly more progeny at higher male-to-female ratios. The interspecific hybrids appear to possess temperature-related characteristics of either B. xylophilus or both of the parents.  相似文献   

16.
The development of Bursaphelenchus xylophilus in pine wood infested with and free of Monochamus carolinensis was investigated. Formation of third-stage dispersal juveniles occurred in the presence and absence of pine sawyer beetles. The proportion of third-stage dispersal juveniles in the total nematode population was negatively correlated with moisture content of the wood. Formation of nematode dauer juveniles was dependent on the presence of the pine sawyer beetle. Dauer juveniles were present in 3 of 315 wood samples taken from non-beetle-infested Scots pine bolts and 81 of 311 samples taken from beetle-infested bolts. Nematode densities were greater in wood samples taken adjacent to insect larvae, pupae, and teneral adults compared with samples taken from areas void of insect activity. Nematodes recovered from beetle larvae, pupae, and teneral adults were mostly fourth-stage dauer juveniles, although some third-stage dispersal juveniles were also recovered. Dauer juvenile density was highest on teneral adult beetles.  相似文献   

17.
Genotypically different host specific pathotypes of Bursaphelenchus xylophilus have been identified. These pathotypes elicit different responses in pines depending on susceptibility, tolerance, or resistance. Continued passage of some of these pathotypes on fungal cultures leads to conversion to nonparasitic populations. These populations metabolize carbon substrates to ethanol by an anaerobic pathway, while operating some level of a phosphoenolpyruvate (PEP)-succinate pathway to excrete succinate-lactate and malate. On the other hand, parasitic populations metabolize glucose to lactate-succinate, mainly by a PEP-succinate pathway, and maintain redox balance through glycerol production. Ethanol and malate are not excreted by parasitic populations.  相似文献   

18.
The progression of events in the development of pine wilt disease following the invasion by Bursaphelenchus xylophilus is reviewed from early migration through pine tissues until symptom development on foliage. Disease resistance in pines, especially the hypersensitive reaction that is successful in controlling many potential pests and pathogens, is explored. Pathologies resulting from the activities of pinewood nematode include cortical trails and cavities; formation of cambial gaps and traumatic resin cysts; browning and death of cortex, phloem, cambium, and ray tissues; granulation and shrinkage of cell cytoplasm in rays; and destruction of resin canal epithelial and ray parenchyma cells. Death of parenchyma, production of toxins, and leakage of oleoresins and other material into tracheids are typical of the hypersensitive reaction occurring in pines following migration of small numbers of pinewood nematodes. The hypothesis presented is that a spreading hypersensitive reaction results in some of the observed pathologies and symptoms and eventually causes pine death. The growth-differentiation balance hypothesis is used to help explain predisposition, oleoresin production and toxicity, susceptibility and resistance, and the effects of variation in climate on host pines as related to pinewilt disease.  相似文献   

19.
The object of this research was to investigate the effects of ambient temperature on the transmission of the pinewood nematode, Bursaphelenchus xylophilus, by its vector, Monochamus alternatus. Ninety M. alternatus were reared individually at one of three constant temperatures (16, 20, and 25 °C). As the ambient temperature decreased from 25 to 16 °C, longevity of vectors decreased, nematode transmission efficiency decreased, and the peak period of nematode transmission was delayed and its peak height decreased. Low temperature may inhibit the transmission process, and this inhibition could be partially responsible for preventing pine wilt disease from devastating pine forests in cool regions.  相似文献   

20.
Wood chips of Pinus strobus inoculated with Bursaphelenchus xylophilus were incubated at 3, 12, 30, or 40 C during intervals of 47, 82, and 130 days to determine the effects of incubation temperature and time on total number of nematodes and occurrence of each life stage. Nematodes did not survive at 40 C; the greatest number of nematodes was maintained at 3 C. The number and percentage of juveniles in the propagative cycle were greatest at 3 C after 47 days, but the percentage was greatest at 30 C after 130 days. More third-stage dispersal larvae, with percentages as high as 85%, were extracted at 3 and 12 C than at 30 C by the end of the study. Dauer larvae were extracted from the chips, but percentages never exceeded 5%. The percentage of adults was greater at 30 C than at 3 and 12 C after 82 and 130 days. When a 1-week heat treatment at 30 C was applied to samples at 3 and 12 C,. numbers and percentages of adults increased. Percentages of dauer larvae increased very slightly when the heat treatment was applied after 47 days, but numbers and percentages of juveniles and dispersals were affected erratically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号