首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Previous laboratory research demonstrated that N-Viro Soil (NVS), an alkaline-stabilized municipal biosolid, suppressed plant-parasitic nematodes. This study continued to explore the use of NVS as a nematode management tool specifically addressing factors that could influence its use. N-Viro Soil from different locations, the components of NVS (de-watered biosolids and fly ash admixtures), and sterilized NVS were applied to sand microcosms to determine effects on nematode survival sand solution pH and ammonia concentrations. This study confirmed the previous finding that an important mechanism of Heterodera glycines suppression by NVS was the generation of alkaline soil conditions. Only the fly ash admixture that resulted in an increase in pH to 10.0 suppressed H. glycines to the same level as NVS. Alkaline-stabilization of biosolids was necessary to achieve nematode suppression. Biosolids applied at rates <3% dry w/w did not suppress H. glycines to the same level as equivalent amounts of NVS. Sand solution pH levels after biosolid application, regardless of rate, were approximately 8.5 whereas 1% and 4% w/w NVS amendment resulted in pH levels of 10.3 and 11.6, respectively. NVS from different processing facilities were all effective in suppressing H. glycines. The NVS source that produced the highest concentration of ammonia did not reduce H. glycines survival to the same level as those sources generating pH levels above 10.1. Microbes associated with NVS appeared not to be responsible for the nematode suppressiveness of the amendment; there was no difference in nematode suppression between autoclaved and nonautoclaved NVS. The role that ammonia plays in the suppression of H. glycines by NVS is still unclear.  相似文献   

2.
From infestation of lettuce with preinfective females to egg deposition, populations of Rotylenchulus reniformis from Baton Rouge, Louisiana; Lubbock and Weslaco, Texas; and Mayaguez, Puerto Rico, required 41, 13, 7, and 7 days at 15, 20, 25, and 34 C, respectively. No nematode infection occurred at 10 C with any R. reniformis population, and the population from Puerto Rico did not reproduce at 15 C. Nematode survival was not influenced by temperature, since populations from Texas and Louisiana survived for 6 months without a host at - 5 , - 1 , 4, and 25 C. Survival of R. reniformis was substantially influenced by soil moisture. Soil moistures greater than 7% (< 1 bar) aided nematode survival at storage temperature of 25 C, whereas moisture adversely affected nematode survival below freezing. Soil moisture below 4% (> 15 bars) favored nematode survival below freezing but adversely affected nematodes in soils stored at 25 C. Soil moisture effects on nematode survival were less accentuated at 4 and 0 C.  相似文献   

3.
In greenhouse experiments, massive application of the fungivorous nematode, Aphelenchus avenae, in summer at 26-33 C (1 x l0⁵ nematodes/500 cm³ autoclaved soil) or in autumn at 18-23 C (5 x 10⁴ nematodes/500 cm³ autoclaved soil) suppressed pre-emergence damping-off of cucumber seedlings due to Rhizoctonia solani AG-4 by 67% or 87%, respectively. Application of 2 x l0⁵ A. avenae to sterilized soil infested with R. solani caused leafminer-like symptom on the cotyledons, which did not occur in mixed inoculations with the entomopathogenic nematode, Steinernema carpocapsae. When 1 x 10⁶ A. avenae were applied 3 days before inoculation with 100 Meloidogyne incognita juveniles, gall numbers on tomato roots were reduced to 50% of controls. Gall numbers also were suppressed by S. carpocapsae (str. All). Reduction in gall numbers was no greater with mixed application of A. avenae and S. carpocapsae than with application of single species, even though twice the number of nematodes were added in the former case. These nematodes were positively attracted to tomato root tips. Aphelenchus avenae suppressed infection of the turnip moth, Agrotis segetum, but not the common cutworm, Spodoptera litura, by S. carpocapsae.  相似文献   

4.
Three strains of Steinernema feltiae Filipjev (All, Mexican, and Breton strains) and one of Heterorhabditis heliothidis (Khan, Brooks, and Hirschmann) were evaluated for their potential to control Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), larvae and pupae in the soil. In laboratory studies, H. heliothidis and S. feltiae (Mexican strain) produced the highest mortality (6 days posttreatment) of CPB when applied to the surface of a soil column containing mature CPB larvae 5 cm below. Mortality ranged from 80 to 90% at rates of 79-158 nematodes/cm². Similar results were seen in a field microplot study with all four nematodes; S. feltiae (Mexican strain) and H. heliothidis were most effective. Adult CPB emergence was reduced 86.5-100% after application of 31-93 H. heliothidis/cm² and 88.4-100% with 93-155 S. feltiae (Mexican strain)/cm². The All strain of S. feltiae was moderately effective (ca. 80% reduction at 93-155 nematodes/cm²), while the Breton strain was ineffective (< 40% reduction at 155 nematodes/cm²). In small plots of potatoes enclosed in field cages, application of H. heliothidis and S. feltiae (Mexican strain) at rates of 93-155 nematodes/cm² before larval CPB burial in the soil resulted in 66-77% reduction in adult CPB emergence. Soil applications of these nematodes show potential for biological control of CPB.  相似文献   

5.
Corn yields were measured after application of nematicides in 16 experiments, mostly in medium-to-heavily textured soil, at 12 locations in Iowa during 1973-1976. The average maximum yield increase in plots treated with nematicides was 21% over yields in untreated plots. Yields were correlated negatively with nematode numbers or nematode biomass in nearly all comparisons. Correlations of nematode numbers in the soil with yield averaged -0.56 for Helicotylenchus pseudorobustus, -0.45 for Hoplolaimus galeatus, -0.51 for Pratylenchus spp., and -0.64 for Xiphinema americanum. Correlation coefficients for numbers of nematodes in the roots and yield averaged -0.63 for Pratylenchus spp. and -0.56 H. galeatus. Correlation coefficients for yield and total number of nematodes averaged -0.65 in roots and -0.55 in soils. Negative correlations also were greater for comparisons of yield with total parasitic-nematode biomass than with numbers of individual nematodes of a species or total numbers of parasitic nematodes.  相似文献   

6.
N-Viro Soil (NVS) is an alkaline-stabilized municipal biosolid that has been shown to lower population densities and reduce egg hatch of Heterodera glycines and other plant-parasitic nematodes; but the mechanism(s) of nematode suppression of this soil amendment are unknown. This study sought to identify NVS-mediated changes in soil chemical properties and their impact upon H. glycines and Meloidogyne incognita mortality. N-Viro Soil was applied to sand in laboratory assays at 0.5%, 1.0%, 2.0%, and 3.0% dry w/w with a nonamended treatment as a control. Nematode mortality and changes in sand-assay chemical properties were determined 24 hours after incubation. Calculated lethal concentration (LC90) values were 1.4% w/w NVS for second-stage juveniles of both nematode species and 2.6 and >3.0% w/w NVS for eggs of M. incognita and H. glycines, respectively. Increasing rates of NVS were strongly correlated (r² = 0.84) with higher sand solution pH levels. Sand solution pH levels and, to a lesser extent, the production of ammonia appeared to be the inorganic chemical-mediated factors responsible for killing plant-parasitic nematodes following amendment with NVS.  相似文献   

7.
The nematode, Neoaplectana carpocapsae, infected >90% of the prepupae of Spodoptera exigua in soil even at concentrations as low as five nematodes/cm2 of soil surface. Pupae were less susceptible to nematode infection in soil than prepupae, with mortality ranging from 10 to 24% and 10 to 83% for pupae exposed 3–5 days and 6–8 days to the nematode, respectively. Longer exposure (6–8 days) of the pupae to the nematode resulted in higher mortality with a positive relationship with increasing concentrations. Adults of S. exigua were susceptible to nematode infections as they emerged from the soil. The higher nematode concentrations (25 and 50 nematodes/cm2) resulted in higher adult mortality. The majority of nematode-induced mortality occurred within 24 hr after emergence. The susceptibility of emerging S. exigua adults to N. carpocapsae offers a new dimension for insect control.  相似文献   

8.
9.
Compatibility of Soil Amendments with Entomopathogenic Nematodes   总被引:1,自引:0,他引:1  
The impact of inorganic and organic fertilizers on the infectivity, reproduction, and population dynamics of entomopathogenic nematodes was investigated. Prolonged (10- to 20-day) laboratory exposure to high inorganic fertilizer concentrations inhibited nematode infectivity and reproduction, whereas short (1-day) exposures increased infectivity. Heterorhabditis bacteriophora was more sensitive to adverse effects than were two species of Steinernema. In field studies, organic manure resulted in increased densities of a native population of Steinernema feltiae, whereas NPK fertilizer suppressed nematode densities regardless of manure applications. Inorganic fertilizers are likely to be compatible with nematodes in tank mixes and should not reduce the effectiveness of nematodes used for short-term control as biological insecticides, but may interfere with attempts to use nematodes as inoculative agents for long-term control. Organic manure used as fertilizer may encourage nematode establishment and recycling.  相似文献   

10.
Four populations of Pratylenchus penetrans did not differ (P > 0.05) in their virulence or reproductive capability on Lahontan alfalfa. There was a negative relationship (r = -0 .7 9 ) between plant survival and nematode inocula densities at 26 ± 3 C in the greenhouse. All plants survived at an inoculum level (Pi) of 1 nematode/cm³ soil, whereas survival rates were 50 to 55% at 20 nematodes/cm³ soil. Alfalfa shoot and root weights were negatively correlated (r = - 0.87; P < 0.05) with nematode inoculum densities. Plant shoot weight reductions ranged from 13 % at Pi 1 nematode/cm³ soil to 69% for Pi 20 nematodes/cm³ soil, whereas root weight reductions ranged from 17% for Pi 1 nematode/cm³ soil to 75% for Pi 20 nematodes/cm³ soil. Maximum and minimum nematode reproduction (Pf/Pi) for the P. penetrans populations were 26.7 and 6.2 for Pi 1 and 20 nematodes/cm³ soil, respectively. There were negative correlations between nematode inoculum densities and plant survival (r = 0.84), and soil temperature and plant survival (r = -0 .7 8 ). Nematode reproduction was positively correlated to root weight (r = 0.89).  相似文献   

11.
A nematode parasitic on prepupae of larch sawfly (Cephalcia lariciphila) appears to be indistinguishable from Neoaplectana carpocapsae. Of three temperatures tested the optimum for development was 25 °C at which most eggs were produced in both the first and second generations. Infective nematodes entered sawfly prepupae through the anus and mouth, but the preferred mode of entry was through the spiracles; prepupal hosts were extremely attractive to infective nematodes. Nematodes overwintered in prepupal hosts and in the soil. Dauerlarvae penetrated 10 cm of packed moist soil to infect prepupae constrained at the bottom of a vertical tube, sawfly mortality decreasing with depth. Dauerlarvae may also migrate 8 cm horizontally, and 5 cm upwards, to invade the host. It is suggested that the nematode could be used to supplement biological control of Cephalcia lariciphila.  相似文献   

12.
Pesta-pelletized Steinernema carpocapsae (All) nematodes were used in soil treatments in the greenhouse against larvae of Western corn rootworm and prepupae of Colorado potato beetle. The pesta-pellets delivered 100,000 living nematodes/g. Infective-stage nematodes and their associated bacteria survived the pesta-pellet process, emerged from the pellets in large numbers in the soil, and reduced adult emergence of both pest insects by more than 90%.  相似文献   

13.
A field trial was conducted for 2 years in an Arredondo fine sand containing a tillage pan at 15-20 cm deep to determine the influence of subsoiling on the distribution of corn roots and plant-parasitic nematodes. Soil samples were taken at various depths and row positions at 30, 60, and 90 days after planting in field corn subsoiled under the row with two chisels and in non-subsoiled corn. At 30 and 60 days, in-row nematode population densities to 60 cm deep were not affected by subsoiling compared with population densities in nonsubsoiled plots. After 90 days, subsoiling had not affected total root length or root weight at the 20 depth-row position sampling combinations, but population densities of Meloidogyne incognita and Criconemella spp. had increased in subsoiled corn. Numbers of Pratylenchus zeae were not affected. Subsoiling generally resulted in a change in distribution of corn roots and nematodes in the soil profile but caused little total increase in either roots or numbers of nematodes. Corn yield was increased by subsoiling.  相似文献   

14.
Median lethal concentrations (LC₅₀) were determined for four nematode populations (two strains of Steinernema feltiae, a S. feltiae hybrid, and S. bibionis) against fifth-instar fall armyworm (Spodoptera frugiperda) larvae and for the most virulent of these nematodes against different instars and stages of the insect. Based on lack of overlap of 95% fiducial limits, there were significant differences in virulence among the four nematodes. The LC₅₀ ranged from 7.6 to 33.3 nematodes/ 0.7 ml water, and slopes of the log dose-probit regression lines were similar except for the S. feltiae All strain. First-instar fall armyworms suffered virtually 100% mortality from the S. feltiae Mexican strain at 1.0 nematode/0.7 ml, and LC₅₀ were 2.3 and 7.9 nematodes/0.7 ml in third-instar and fifth-instar larvae, respectively. Pupae had 7-20% mortality at doses ranging from 30 to 60 nematodes/0.7 ml.  相似文献   

15.
Wilt-susceptible cultivar ''Rowden'' cotton was inoculated wilh Meloidogyne incognita (N), Trichoderma harzianum (T), and Fusarium oxysporum f. sp. vasinfectum (F) alone and in all combinations in various time sequences. Plants inoculated with F alone or in combination with T did not develop wilt, Simultaneous inoculation of 7-day-old seedlings with all three organisms (NTF) produced earliest wilt. However, plants receiving nematodes at 7 days and Fusarium and Trichoderma at 2 or 4 weeks later (N-T-F, N-TF) developed the greatest wilt between 49-84 days after initial nematode inoculation. During the same period, Fusarium added 4 weeks after initial nematode inoculation (N-F) and Fusarium added 4 weeks after initial simultaneous inoculation of nematode and Trichoderma (NT-F) produced the least wilt. The addition of Fusarium inhibited nematode reproduction. Simultaneous inoculation with nematodes and Trichoderma (NT-) resulted in the greatest root gall development, whereas nematodes alone produced the greatest number of larvae. In comparison with noninoculated controls (CK), treatments involving all three organisms inhibited plant growth, plants inoculated with the nematode alone (N-) or with nematodes and Trichoderma (NT-) simultaneously had greatest root weight. Any treatment involving the nematode resulted in fewer bolls per plant and greater necrosis on roots than the noninoculated checks.  相似文献   

16.
In controlled greenhouse and growth chamber studies, Pratylenchus neglectus reduced dry shoot and dry root weight of rangeland grasses. Greenar intermediate wheatgrass and Secar Snake River wheatgrass were more susceptible to P. neglectus than Hycrest crested wheatgrass, Fairway crested wheatgrass, and Nordan crested wheatgrass at a greenhouse bench temperature of 26 ± 3 C. Hycrest was the most tolerant to parasitism by P. neglectus. An initial nematode inoculum density of four nematodes/cm³ soil reduced dry shoot weights of Hycrest, Fairway, Nordan, Greenar, and Secar by 22%, 33%, 36%, 47%, and 49%, and reduced dry root weights by 26%, 31%, 32%, 38%, and 42%. There was a positive relationship between dry root weight, the nematode inoculum density, and the nematode reproduction index (final nematode population/initial nematode inoculum). However, there were more nematodes/g root tissue on Secar than on the crested wheatgrasses, and significantly more nematodes/g root tissue on Greenar, Fairway, and Nordan than on Hycrest. Pratylenchus neglectus was most pathogenic at four nematodes/cm³ soil at 30 C and least pathogenic at one nematode/cm³ soil at 15 C. Greenar and Secar were more susceptible to the nematode than Hycrest, Fairway, and Nordan at two and four nematodes/cm³ soil at 20 to 30 C. The nematode reproductive indices were greatest at 30 C and were positively correlated with dry root weight. Secar supported the most and Hycrest had the fewest nematodes/g root.  相似文献   

17.
Soil application of DBCP (l,2-dibromo-3-chloropropane) and foliar applications of oxamyl (methyl N'',N''-dimethyl-N-[(methylcarbamoyl)oxy]-l-thiooxamimidate) were compared for control of Tylenchulus semipenetrans in a grapefruit (Citrus paradisi) orchard, DBCP reduced nematode populations and increased fruit growth rate, fruit size at harvest, and yield compared to the untreated controls in the 2 years following treatments. Foliar applications of oxamyl reduced nematode populations and increased fruit growth rate slightly the first year, but not in the second. Foliar applications of oxamyl did not improve control attained by DBCP alone. Soil application of aldicarb [2-methyl-2-(methylthio)propionaldehyde-O-(methylcarbamoyl)oxime] or DBCP to an orange (C. sinensis) orchard reduced T. semipenetrans populations in the 3 years tested and increased yield in 1 of 3 years. Aldicarb treatment reduced fruit damage caused by the citrus rust mite, Phyllocoptruta oleivora. Aldicarb, applied at 5.7 or 11.4 kg/ha, by disk incorporation or chisel injection, was equally effective in controlling nematodes, improving yields, fruit size, and external quality. In a grapefruit orchard, chisel-applied aldicarb reduced nematode populations and rust mite damage and increased yields in both years and increased fruit size in one year. The 11.4-kg/ha rate was slightly more effective than the 5.7-kg/ha rate. Aldicarb appears to be an adequate substitute for DBCP for nematode control in Texas citrus orchards and well-suited to an overall pest management system for Texas citrus.  相似文献   

18.
The pinewood nematode, Bursaphelenchus xylophilus, was inoculated into established native jack and red pines (Pinus banksiana and P. resinosa) and exotic Austrian pine (P. nigra) in Minnesota and Wisconsin forests during summer 1981. The nematode isolates did not kill established nonstressed pine trees growing in the forest. However, the same nematode isolates killed pine seedlings under greenhouse conditions. Girdling the main stem of some trees to induce stress resulted in the death of the majority of inoculated and noninoculated branches of Austrian and jack pines, but no branch death was observed on red pine. Greater numbers of nematodes were extracted from branches of inoculated, girdled trees than from nongirdled trees. The mean number of nematodes extracted from branches of inoculated, nongirdled trees was 0.3 - 14 nematodes per gram of wood.  相似文献   

19.
The mermithid parasite Heleidomermis magnapapula was maintained in larvae of the midge Culicoides variipennis for 20 months in enamel pans containing nutrient-rich water and polyester pads as a substrate. Inseminated female mermithids were introduced to the pad surface when the host was in the late second or early third-instar. Host larvae were harvested from the pans 9 days after exposure and held in tap water for nematode emergence. Preparasite yield was positively correlated with female nematode size and averaged 1,267 preparasites/female. Male and female nematodes emerged an average of 12.2 and 13.4 days after host exposure, respectively. Supplemental host food (Panagrellus) during the final days of parasitism did not alter time of emergence. Parasites emerging singly were 64% females, whereas superparasitized hosts yielded males (up to nine/host). Nematode carryover into the adult midge normally occurred at a level of 0.5-2.5%. Parasite load (nematodes/ parasitized individual) in midge adults was lower than that of larvae from the same cohort, and adult midges were more likely to harbor female parasites. Exposure of fourth-instar host larvae resulted in higher levels of adult parasitism (up to 17%).  相似文献   

20.
Among important nematode species occurring in Japan, current research achievements with the following four nematodes are reviewed: 1) Soybean cyst nematode (SCN), Heterodera glycines - breeding for resistance, race determination, association with Cephalosporium gregatum in azuki bean disease, and isolation of hatching stimulant. 2) Potato-cyst nematode (PCN), Globodera rostochiensis - pathotype determination (Ro 1), breeding for resistance, and control recommendations. 3) Pinewood nematode (PWN), Bursaphelenchus xylophilus - primary pathogen in pine wilt disease, life cycle exhibiting a typical symbiosis with Japanese pine sawyer, Monochamus alternatus, and project for control. 4) Rice root nematodes (RRN), Hirschmanniella imamuri and H. oryzae - distribution of species, population levels in roots, and role of these nematodes in rice culture.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号