首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Utilizing a Concanavalin A (Con A)-hemocyanin conjugate, the majority of cuticular Con A binding sites were shown to be localized on the head region of Caenorhabclitis elegans and Meloidogyne incognita. Secretions which apparently emanated from the amphids and inner labial papillae did not label.  相似文献   

2.
Foliar applications of ethyl 4-(methylthio)-m-tolyl isopropylphosphoramidate (phenamiphos) or S-methyl 1-(dimethylcarbamoyl)-N-[(methylcarbamoyl)oxy] thioformimidate (oxamyl) retarded infection of sugarbeets by the sugarbeet nematode, Heterodera schachtii under greenhouse conditions. Maximum nematode control was obtained when treatments were applied previous to, or at the time of, inoculation of plants with the nematode. Consecutive foliar applications inhibited nematode development, with four applications giving greatest inhibition of maturation. A treatment with either phenamiphos or oxamyl at 2,000 μg/ml (ppm) resulted in the greatest increase in plant growth, and 4,000 μg/ml gave the best nematode control. A treatment of 4,000 μg/ml of either phenamiphos or oxamyl was phytotoxic. However, this was due to container confinement of the chemical since phytotoxicity at this rate has not been observed under field conditions.  相似文献   

3.
An in vitro bioassay with a 96-well microtiter plate was used to study the effect of lectins on burrowing nematode penetration of citrus roots. In each well, one 4-mm root segment, excised from the zone of elongation of rough lemon roots, was buried in 0.88 g dry sand. Addition of a Radopholus citrophilus suspension containing ca. 300 nematodes in 50 μ1 test solution completely moistened the sand in each well. The technique assured uniform treatment concentration throughout the medium. Within 16-24 hours, burrowing nematodes penetrated citrus root pieces, primarily through the cut ends. The lectins (100 μg/ml) Concanavalin A (Con A), soybean agglutinin (SBA), wheat germ agglutinin (WGA), and Lotus tetragonolobus agglutinin (LOT) stimulated an increase in penetration of citrus root segments by Radopholus citrophilus. Concentrations as low as 12.5 μg/ml Con A, LOT, and WGA stimulated burrowing nematode penetration of citrus roots. Heat denaturation of the lectins reversed their effect on penetration; however, incubation of nematodes in lectin (25 μg/ml) with 25 mM competitive sugars did not. The reason for enhanced penetration associated with lectins is unclear.  相似文献   

4.
A series of greenhouse experiments was conducted to elucidate the postinfection development of Heterodera glycines in response to applications of alachlor and fenamiphos. The rate of H. glycines maturation on a susceptible soybean cultivar was not altered by 1.0 μg alachlor/g soil but was completely inhibited by 1.0 or 1.5 μg fenamiphos/g soil. An alachlor-fenamiphos combination allowed development after an initial 300-degree-day delay. Nematode maturation on the resistant soybean cultivar Centennial with 1.0 μg alachlor/g soil was similar to that observed on an untreated resistant control. Twice as many females matured on Centennial plants growing in alachlor-treated soil as on untreated Centennial plants. Fenamiphos in combination with alachlor (1.0 μg a.i./g soil) allowed development on Centennial at half the rate of the resistant control. This antagonism between alachlor and fenamiphos on development may help to explain late season population resurgence of H. glycines observed with field application of these pesticides.  相似文献   

5.
A commercial formulation of furfural was recently launched in the United States as a turfgrass nematicide. Three field trials evaluated efficacy of this commercial formulation on dwarf bermudagrass putting greens infested primarily with Belonolaimus longicaudatus, Meloidogyne graminis, or both these nematodes, and in some cases with Mesocriconema ornatum or Helicotylenchus pseudorobustus. In all these trials, furfural improved turf health but did not reduce population densities of B. longicaudatus, M. graminis, or the other plant-parasitic nematodes present. In two additional field trials, efficacy of furfural at increasing depths in the soil profile (0 to 5 cm, 5 to 10 cm, and 10 to 15 cm) against B. longicaudatus on bermudagrass was evaluated. Reduction in population density of B. longicaudatus was observed in furfural-treated plots for depths below 5 cm on several dates during both trials. However, no differences in population densities of B. longicaudatus were observed between the furfural-treated plots and the untreated control for soil depth of 0 to 5 cm during either trial. These results indicate that furfural applications can improve health of nematode-infested turf and can reduce population density of plant-parasitic nematodes in turf systems. Although the degree to which turf improvement is directly caused by nematicidal effects is still unclear, furfural does appear to be a useful nematode management tool for turf.  相似文献   

6.
Lectin-binding glycoproteins in seven populations of two burrowing nematode sibling species were probed with five different biotinylated lectins on Western blots, and differences were correlated with nematode ability to parasitize citrus and to overcome citrus rootstock resistance. Banding patterns of molecular weight standards were fit best by an exponential decay function, and a predictive equation was used to estimate molecular weights (r² = 0.999). A band (131 kDa) that labeled with the lectin Concanavalin A (Con A) occurred in extracts from cuticles and egg shells of populations of Radopholus citrophilus that parasitize citrus. Wheat germ agglutin labeled a band (58 kDa) in aqueous homogenates of populations that reproduce in roots of citrus rootstock normally resistant to burrowing nematodes. The two sibling species R. citrophilus and R. similis were distinguished by a high molecular weight Con A-labeled band (608 kDa) from cuticle and egg shells. Probing blots with the lectin Limulus polyphemus agglutinin indicated that each population contained a band (12-16 kDa) specifically inhibited by the addition of 25 mM neuraminic acid, suggesting that glycoproteins with sialic acid moieties are present in burrowing nematodes.  相似文献   

7.
Parthenogenetically activated oocytes cannot develop to term in mammals due to the lack of paternal gene expression and failed X chromosome inactivation (XCI). To further characterize porcine parthenogenesis, the expression of 18 imprinted genes was compared between parthenogenetic (PA) and normally fertilized embryos (Con) using quantitative real-time PCR (qRT-PCR). The results revealed that maternally expressed genes were over-expressed, whereas paternally expressed genes were significantly reduced in PA fetuses and placentas. The results of bisulfite sequencing PCR (BSP) demonstrated that PRE-1 and Satellite were hypermethylated in both Con and PA fetuses and placentas, while XIST DMRs were hypomethylated only in PA samples. Taken together, these results suggest that the aberrant methylation profile of XIST DMRs and abnormal imprinted gene expression may be responsible for developmental failure and impaired growth in porcine parthenogenesis.  相似文献   

8.
A 2-year study was conducted on Merion Kentucky bluegrass turf (Poa pratensis) to identify potential relationships among seasonal population dynamics of nematodes, chemical applications, thatch, tillering, dollar spot caused by Sclerotinia homoeocarpa, clipping weight, and other factors. Numbers of Tylenchorhynchus maximus determined during June were inversely related to the wet weight of grass from May. One or more monthly counts of Paratylenchus hamatus, Criconemella rusium, and T. maximus negatively correlated with the numbers of spring tillers. Applications of benomyl, used for dollar spot control, decreased numbers of T. maximus and free-living nematodes, and this chemical was associated with acidification of the thatch. Hoplolaimus galeatus levels were associated with an estimated 8% increase in the severity of dollar spot.  相似文献   

9.
The effects of Dactylella oviparasitica strain 50 applications on sugarbeet cyst nematode (Heterodera schachtii) population densities and plant weights were assessed in four agricultural soils. The fungus was added to methyl iodide-fumigated and nonfumigated portions of each soil. The soils were seeded with Swiss chard. Four weeks later, soils were infested with H. schachtii second-stage juveniles (J2). Approximately 1,487 degree-days after infestation, H. schachtii cyst, egg and J2 numbers and plant weights were assessed. In all four fumigated soils, D. oviparasitica reduced all H. schachtii population densities and increased most of the plant weights compared to the nonamended control soils. In two of the nonfumigated soils (10 and SC), D. oviparasitica reduced H. schachtii population densities and increased most plant weight values compared to the nonamended control soils. For the other two nonfumigated soils (44 and 48), which exhibited pre-existing levels of H. schachtii suppressiveness, fungal applications had relatively little impact on H. schachtii population densities and plant weights. The results from this study combined with those from previous investigations suggest that D. oviparasitica strain 50 could be an effective biological control agent.  相似文献   

10.
In 2010, a turfgrass bionematicide containing in vitro produced Pasteuria sp. for management of Belonolaimus longicaudatus was launched under the tradename Econem. Greenhouse pot studies and field trials on golf course fairways and tee boxes evaluated Econem at varied rates and application frequencies. Trials on putting greens compared efficacy of three applications of Econem at 98 kg/ha to untreated controls and 1,3-dichloropropene at 53 kg a.i/ha. Further putting green trials evaluated the ability of three applications of Econem at 98 kg/ha to prevent resurgence of population densities of B. longicaudatus following treatment with 1,3-dichloropropene at 53 kg a.i./ha. None of the Econem treatments in pot studies were effective at reducing B. longicaudatus numbers (P ≤ 0.05). Econem was associated with reduction in population densities of B. longicaudatus (P ≤ 0.1) on only a single sampling date in one of the eight field trials and did not improve turf health in any of the trials (P > 0.1). These results did not indicate that Econem is an effective treatment for management of B. longicaudatus on golf course turf.  相似文献   

11.
Fluensulfone is a new nematicide in the flouroalkenyl chemical group. A field experiment was conducted in 2012 and 2013 to evaluate the efficacy of various application methods of fluensulfone for control of Meloidogyne spp. in cucumber (Cucumis sativus). Treatments of fluensulfone (3.0 kg a.i./ha) were applied either as preplant incorporation (PPI) or via different drip irrigation methods: drip without pulse irrigation (Drip NP), pulse irrigation 1 hr after treatment (Drip +1P), and treatment at the same time as pulse irrigation (Drip =P). The experiment had eight replications per treatment and also included a PPI treatment of oxamyl (22.5 kg a.i./ha) and a nontreated control. Compared to the control, neither the oxamyl nor the fluensulfone PPI treatments reduced root galling by Meloidogyne spp. in cucumber. Among the drip treatments, Drip NP and Drip +1P reduced root galling compared to the control. Cucumber yield was greater in all fluensulfone treatments than in the control. In a growth-chamber experiment, the systemic activity and phytotoxicity of fluensulfone were also evaluated on tomato (Solanum lycopersicum), eggplant (Solanum melongena), cucumber, and squash (Curcurbita pepo). At the seedling stage, foliage of each crop was sprayed with fluensulfone at 3, 6, and 12 g a.i./liter, oxamyl at 4.8 g a.i./liter, or water (nontreated control). Each plant was inoculated with Meloidogyne incognita juveniles 2 d after treatment. There were six replications per treatment and the experiment was conducted twice. Foliar applications of fluensulfone reduced plant vigor and dry weight of eggplant and tomato, but not cucumber or squash; application of oxamyl had no effect on the vigor or weight of any of the crops. Typically, only the highest rate of fluensulfone was phytotoxic to eggplant and tomato. Tomato was the only crop tested in which there was a reduction in the number of nematodes or galls when fluensulfone or oxamyl was applied to the foliage compared to the nontreated control. This study demonstrates that control of Meloidogyne spp. may be obtained by drip and foliar applications of fluensulfone; however, the systemic activity of fluensulfone is crop specific and there is a risk of phytotoxicity with foliar applications.  相似文献   

12.
It is generally believed that aberrant expression of imprinted genes participates in growth retardation of mammalian parthenogenesis. Neuronatin (NNAT), a paternally expressed gene, plays important roles in neuronal growth and metabolic regulation. Here we have compared the gene expression and promoter methylation pattern of NNAT between pig normally fertilized (Con) and parthenogenetic (PA) embryos. The results showed loss of NNAT expression (p < 0.001) and hypermethylation of NNAT promoter in PA samples. Additionally, partial methylation was observed in Con fetuses, while almost full methylation and unmethylation of NNAT promoter were apparent in Metaphase II (MII) oocytes and mature sperms, respectively, which identified the CpG promoter region as a putative differentially methylated region (DMR) of NNAT. The data demonstrate that promoter hypermethylation is associated with the silencing of NNAT in pig PA fetuses, which may be related to developmental failure of pig parthenogenesis at early stages.  相似文献   

13.
Currently, there is a strong trend towards increasing insecticide-based vector control coverage in malaria endemic countries. The ecological consequence of insecticide applications has been mainly studied regarding the selection of resistance mechanisms; however, little is known about their impact on vector competence in mosquitoes responsible for malaria transmission. As they have limited toxicity to mosquitoes owing to the selection of resistance mechanisms, insecticides may also interact with pathogens developing in mosquitoes. In this study, we explored the impact of insecticide exposure on Plasmodium falciparum development in insecticide-resistant colonies of Anopheles gambiae s.s., homozygous for the ace-1 G119S mutation (Acerkis) or the kdr L1014F mutation (Kdrkis). Exposure to bendiocarb insecticide reduced the prevalence and intensity of P. falciparum oocysts developing in the infected midgut of the Acerkis strain, whereas exposure to dichlorodiphenyltrichloroethane reduced only the prevalence of P. falciparum infection in the Kdrkis strain. Thus, insecticide resistance leads to a selective pressure of insecticides on Plasmodium parasites, providing, to our knowledge, the first evidence of genotype by environment interactions on vector competence in a natural Anopheles–Plasmodium combination. Insecticide applications would affect the transmission of malaria in spite of resistance and would reduce to some degree the impact of insecticide resistance on malaria control interventions.  相似文献   

14.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

15.
Compatibility of Soil Amendments with Entomopathogenic Nematodes   总被引:1,自引:0,他引:1  
The impact of inorganic and organic fertilizers on the infectivity, reproduction, and population dynamics of entomopathogenic nematodes was investigated. Prolonged (10- to 20-day) laboratory exposure to high inorganic fertilizer concentrations inhibited nematode infectivity and reproduction, whereas short (1-day) exposures increased infectivity. Heterorhabditis bacteriophora was more sensitive to adverse effects than were two species of Steinernema. In field studies, organic manure resulted in increased densities of a native population of Steinernema feltiae, whereas NPK fertilizer suppressed nematode densities regardless of manure applications. Inorganic fertilizers are likely to be compatible with nematodes in tank mixes and should not reduce the effectiveness of nematodes used for short-term control as biological insecticides, but may interfere with attempts to use nematodes as inoculative agents for long-term control. Organic manure used as fertilizer may encourage nematode establishment and recycling.  相似文献   

16.
Fluorescent conjugates of the lectins soybean agglutinin (SBA), Concanavalin A (Con A), wheat germ agglutinin (WGA), Lotus tetragonolobus agglutinin (LOT), and Limulus polyphemus agglutinin (LPA) bound primarily to amphidial openings and amphidial secretions of viable, preinfective second-stage juveniles (J2) of Meloidogyne incognita races 1 and 3 (Mil, Mi3) and M. javanica (Mj). No substantial difference in fluorescent lectin binding was observed among the populations examined. Binding of only LOT and LPA were inhibited in the presence of 0.1 M competitive sugar. Structural differences in amphidial carbohydrate complexes among populations of Mi 1, Mi3, and Mj were revealed by glycohydrolase treatment of preinfective J2 and subsequent labeling with fluorescent lectins. A quantitative microfiltration enzyme-linked lectin assay revealed previously undetected differences in lectin binding to nonglycohydrolase-treated J2. Freinfective J2 of Mj bound the greatest amount of SBA, LOT, and WGA, whereas J2 of Mil bound the most LPA.  相似文献   

17.
Our overall goal was to investigate several aspects of pecan weevil, Curculio caryae, suppression with entomopathogenic nematodes. Specifically, our objectives were to: 1) determine optimum moisture levels for larval suppression, 2) determine suppression of adult C. caryae under field conditions, and 3) measure the effects of a surfactant on nematode efficacy. In the laboratory, virulence of Heterorhabditis megidis (UK211) and Steinernema carpocapsae (All) were tested in a loamy sand at gravimetric water contents of negative 0.01, 0.06, 0.3, 1.0, and 15 bars. Curculio caryae larval survival decreased as moisture levels increased. The nematode effect was most pronounced at –0.06 bars. At –0.01 bars, larval survival was ≤5% regardless of nematode presence, thus indicating that intense irrigation alone might reduce C. caryae populations. Overall, our results indicated no effect of a surfactant (Kinetic) on C. caryae suppression with entomopathogenic nematodes. In a greenhouse test, C. caryae larval survival was lower in all nematode treatments compared with the control, yet survival was lower in S. carpocapsae (Italian) and S. riobrave (7–12) treatments than in S. carpocapsae (Agriotos), S. carpocapsae (Mexican), and S. riobrave (355) treatments (survival was reduced to approximately 20% in the S. riobrave [7–12] treatment). A mixture of S. riobrave strains resulted in intermediate larval survival. In field experiments conducted over two consecutive years, S. riobrave (7–12) applications resulted in no observable control, and, although S. carpocapsae (Italian) provided some suppression, treatment effects were generally only detectable one day after treatment. Nematode strains possessing both high levels of virulence and a greater ability to withstand environmental conditions in the field need to be developed and tested.  相似文献   

18.
Entomopathogenic Nematode Production and Application Technology   总被引:1,自引:0,他引:1  
Production and application technology is critical for the success of entomopathogenic nematodes (EPNs) in biological control. Production approaches include in vivo, and in vitro methods (solid or liquid fermentation). For laboratory use and small scale field experiments, in vivo production of EPNs appears to be the appropriate method. In vivo production is also appropriate for niche markets and small growers where a lack of capital, scientific expertise or infrastructure cannot justify large investments into in vitro culture technology. In vitro technology is used when large scale production is needed at reasonable quality and cost. Infective juveniles of entomopathogenic nematodes are usually applied using various spray equipment and standard irrigation systems. Enhanced efficacy in EPN applications can be facilitated through improved delivery mechanisms (e.g., cadaver application) or optimization of spray equipment. Substantial progress has been made in recent years in developing EPN formulations, particularly for above ground applications, e.g., mixing EPNs with surfactants or polymers or with sprayable gels. Bait formulations and insect host cadavers can enhance EPN persistence and reduce the quantity of nematodes required per unit area. This review provides a summary and analysis of factors that affect production and application of EPNs and offers insights for their future in biological insect suppression.  相似文献   

19.
A polymer sticker was used as a coating in which oxamyl was applied to seeds of alfalfa cultivar Saranac for the control of Pratylenchus penetrans and Meloidogyne hapla. The sticker, diluted 1:1 (sticker:water) to 1:5, delayed seedling emergence during the first 4 days after planting. By day 13, however, emergence from all sticker treatments was comparable to the control. Shoot growth of seedlings at day 21 was less than that of the control only from seeds coated with a 1:1 dilution; root growth and nodulation were not affected. Sticker-coated seeds absorbed 30-58% as much water in 3.5 hours as was absorbed by uncoated seeds. Oxamyl concentrations of 40-160 mg/ml in a 1:5 sticker : water mixture had no adverse affect on seedling emergence, growth, and nodulation over 3 weeks. Oxamyl at 160 mg/ml was more effective against P. penetrans than M. hapla. Growth of alfalfa in P. penetrans-infested soil was greater than that of the control in each sampling for 11 weeks. The reduction of number of P. penetrans in soil and roots moderated slowly over 11 weeks from 90% to 60%. Shoot and root growth of alfalfa from oxamyl-coated seed in M. hapla-infested soil were greater than those of the control for 7 and 11 weeks, respectively. The reduction in the number of M. hapla in the soil and roots changed from 80% at 7 weeks to 15% at 11 weeks.  相似文献   

20.
In 2012, the Washington raspberry (Rubus idaeus) industry received a special local needs (SLN) 24(c) label to apply Vydate L® (active ingredient oxamyl) to nonbearing raspberry for the management of Pratylenchus penetrans. This is a new use pattern of this nematicide for raspberry growers; therefore, research was conducted to identify the optimum spring application timing of oxamyl for the suppression of P. penetrans. Three on-farm trials in each of 2012 and 2013 were established in Washington in newly planted raspberry trials on a range of varieties. Oxamyl was applied twice in April (2013 only), May, and June, and these treatments were compared to each other as well as a nontreated control. Population densities of P. penetrans were determined in the fall and spring postoxamyl applications for at least 1.5 years. Plant vigor was also evaluated in the trials. Combined results from 2012 and 2013 trials indicated that application timing in the spring was not critical. Oxamyl application reduced root P. penetrans population densities in all six trials. Reductions in P. penetrans population densities in roots of oxamyl-treated plants, regardless of application timing, ranged from 62% to 99% of densities in nontreated controls. Phytotoxicity to newly planted raspberry was never observed in any of the trials. A nonbearing application of oxamyl is an important addition to current control methods used to manage P. penetrans in raspberry in Washington.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号