首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Key enzymes of the glyoxylate cycle (isocitrate lyase and malate synthetase) were found in the liver and kidney of rats suffering from alloxan diabetes. The activities of these enzymes in the liver were 0.080 and 0.0430 U/mg protein, respectively. Isocitrate lyase activity in the kidney was 0.030 U/mg protein, and that of the malate synthetase was 0.018 U/mg protein. Peroxisomal localization of the enzymes was shown. A novel malate dehydrogenase isoform was found in a liver of rats suffering from the alloxan diabetes. The isocitrate lyase was isolated by selective (NH4)2SO4 precipitation and DEAE-Toyopearl chromatography. The resulting enzyme preparation had specific activity 6.1 U/mg protein, corresponding to 76.25-fold purification with 32.6% yield. The isocitrate lyase was found to follow the Michaelis--Menten kinetic scheme (Km for isocitrate, 0.08 mM) and to be competitively inhibited by glucose 1-phosphate (Ki = 1. 25 mM), succinate (Ki = 1.75 mM), and citrate (Ki = 1.0 mM); the pH optimum of the enzyme was 7.5 in Tris-HCl buffer.  相似文献   

2.
Development of postparasites and adult females of Romanomermis culicivorax Ross and Smith, 1976 may be retarded by keeping cultures at 10 or 15 C for 15 wk. Storage at 5 C resulted in high mortality of postparasites. A storage temperature of 10 C is suitable if development of postparasites, young adults, and gravid females is to be greatly retarded. None of the females were gravid when postparasites (1-6 days old) were kept at 10 C for 15 wk. Development resumed after the cultures were returned to 26 C and no significant mortality occurred. A storage temperature of 15 C is suitable if development is to be only moderately retarded. After a 15-wk storage period, only a few weeks were required to return the cultures to full production status.  相似文献   

3.
Key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, were identified in pupas of the butterfly Papilio machaon L. The activities of these enzymes in pupas were 0.056 and 0.108 unit per mg protein, respectively. Isocitrate lyase was purified by a combination of various chromatographic steps including ammonium sulfate fractionation, ion-exchange chromatography on DEAE-Toyopearl, and gel filtration. The specific activity of the purified enzyme was 5.5 units per mg protein, which corresponded to 98-fold purification and 6% yield. The enzyme followed Michaelis-Menten kinetics (Km for isocitrate, 1.4 mM) and was competitively inhibited by succinate (Ki = 1.8 mM) and malate (Ki = 1 mM). The study of physicochemical properties of the enzyme showed that it is a homodimer with a subunit molecular weight of 68 +/- 2 kD and a pH optimum of 7.5 (in Tris-HCl buffer).  相似文献   

4.
The enzyme activities of isocitrate dehydrogenase (ICDH, NADP-specific), lactate dehydrogenase (LDH), malate dehydrogenase (MDH), phosphoenolpyruvate carboxykinase (PEPCK), phosphofructokinase (PFK), pyruvate kinase (PK), and fructose-l,6-bisphosphatase (FBPase) were studied in the third-stage juveniles of Steinernema carpocapsae. Reaction requirements, pH optima, substrate and cofactor kinetic constants were similar to those reported previously from other parasitic helminths with the exception of LDH, which was unstable and could not be characterized for specific activity and kinetic constants. The respective pH optima were 7.5 for ICDH, 8.8 for MDH, 6.5 for PEPCK, 7.3 for PFK, 7.2 for PK, and 7.5 for FBPase. The specific activities for ICDH, MDH, PEPCK, PFK, PK, and FBPase at pH 7.5 were 4.8, 1,300, 22, 25, 35, and 6.8 (nmoles substrate ∙ min⁻¹ ∙ mg protein⁻¹), respectively. In summary, the infective juveniles of S. carpocapsae display the metabolism typical of a facultative aerobe.  相似文献   

5.
Biochemical analyses of total protein, lipid, carbohydrate, DNA, amino acid, and length, width, and dry weight measurements are reported for different stages of Romanomermis culicivorax cultured in the mosquito, Culex pipiens. The Bradford technique for assaying total protein was the most sensitive and reliable biochemical technique tested for assaying in vivo growth of R. culicivorax. Increases in total protein, lipid, carbohydrate, and dry weight during growth from preparasite to postparasite were greater than 6,900-fold for females and 2,300-fold for males. DNA increased 650-fold and 233-fold during development to female and male postparasites, respectively. The proportions of amino acids for preparasites were significantly different (P ≤ 0.01) from female and male postparasites for all amino acids tested, except methionine and tyrosine. Female and male postparasites were similar in protein, lipid, carbohydrate, DNA, and most amino acid proportions, but were significantly different in relative concentrations of serine, glycine, and alanine (P ≤ 0.01). Preliminary results suggest that the use of amino acid ratios from female postparasites improves the in vitro culture performance of R. culicivorax.  相似文献   

6.
The levels of Krebs cycle, glyoxylate cycle, and certain other enzymes were measured in a wild-type strain and in seven groups of acetate-nonutilizing (acu) mutants of Neurospora crassa, both after growth on a medium containing sucrose and after a subsequent 6-hr incubation in a similar medium, containing acetate as the sole source of carbon. In the wild strain, incubation in acetate medium caused a rise in the levels of isocitrate lyase, malate synthase, phosphoenolpyruvate carboxykinase, acetyl-coenzyme A synthetase, nicotinamide adenine dinucleotide phosphate-linked isocitrate dehydrogenase, citrate synthase, and fumarate hydratase. Isocitrate lyase activity was absent in acu-3 mutants; acu-5 mutants lacked acetyl-coenzyme A synthetase activity; and no oxoglutarate dehydrogenase activity (or only low levels) could be detected in acu-2 and acu-7 mutants. In acu-6 mutants, phosphoenolpyruvate carboxykinase activity was either very low or absent. No specific biochemical deficiencies could be attributed to the acu-1 and acu-4 mutations. The role of several of these enzymes during growth on acetate is discussed.  相似文献   

7.
During the growth of turnip seedlings, two new lipases have been demonstrated, one with a maximum activity at pH 4.5 (acid lipase) and the other with a maxima at pH 8.6 (alkaline lipase). Many different enzymes are involved in gluconeogenesis: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase, aconitase, citrate synthetase, fumarase, glycolate oxidase, phosphoenol-pyruvate carboxykinase. All of these show maximum activity coinciding with the stage in which lipid hydrolysis is maximal and when the accumulation of soluble carbohydrates has also reached its peak. The alkaline lipase as found to be located mainly in the spherosomes, whereas the glyoxysomes contained the following main activities: catalase, isocitrate lyase, malate synthetase, malate dehydrogenase and citrate synthetase. Aconitase, together with cytochrome oxidase and fumarase showed their highest activity in the mitochondria, and the presence of malate dehydrogenase, citrate synthetase and glycolate oxidase was also observed in these organelles. In the membrane-bound fraction, the activities of cytochrome reductase, glycolate oxidase and phosphoenol-pyruvate kinase were marked, although the latter enzyme was even more active in the soluble fraction.  相似文献   

8.
The enzymes of the glyoxylate cycle, isocitrate lyase (EC.4.1.3.1) and malate synthase (EC.4.1.3.2), were measured in cell-free extracts from the cyanobacterium Anacystis nidulans Drouet during photoautotrophic growth in medium aerated with ordinary air (0.03% CO2). Isocitrate lyase had an average specific activity of 112 nmoles·min?1·mg protein?1 whereas malate synthase had an average specific activity of 12.5 nmoles·min?1·mg protein?1. Unpurified isocitrate lyase showed classical Michaelis kinetics with a Km of 8 mM. Isocitrate lyase activity was strongly inhibited by numerous cellular metabolites at 10 mM concentration. The previously reported low specific activity for isocitrate lyase may be due to metabolite inhibition caused by growth in high CO2 concentrations. The activities reported for isocitrate lyase and malate synthase suggest the operation of the glyoxylate cycle in Anacystis nidulans under CO2-limiting growth conditions.  相似文献   

9.
The key enzymes of the glyoxylate cycle, isocitrate lyase and malate synthase, have been detected in liver of foodstarved rats. Activities became measurable 3 days and peaked 5 days after the beginning of starvation. Both enzymes were found in the peroxisomal cell fraction after organelle fractionation by isopycnic centrifugation. Isocitrate lyase was purified 112-fold by ammonium sulfate precipitation, and chromotography on DEAE-cellulose and Toyopearl HW-65. The specific activity of the purified enzyme was 9.0 units per mg protein. The Km(isocitrate) was 68 μM and the pH optimum was at pH 7.4. Malate synthase was enriched 4-fold by ammonium sulfate precipitation. The enzyme had a Km(acetyl-CoA) of 0.2 μM, a Km(glyoxylate) of 3 mM and a pH optimum of 7.6.  相似文献   

10.
Isocitrate lyase and malate synthase are specific enzymes of the glyoxylate cycle, used here as glyoxysomal markers. Both enzymes were found in the mitochondrial fraction after organelle fractionation by isopycnic centrifugation. Electron microscopy of this fraction indicated that mitochondria were the only recognizable organelles. Using an immunogold labeling method with anti-(malate synthase) antiserum, the only organelles stained in cells were the mitochondria. These results show that the glyoxylate cycle is present in mitochondria in Euglena.  相似文献   

11.
The presence and some properties of the key enzymes of the glyoxylate cycle, isocitrate lyase (threo-Ds-isocitrate glyoxylate-lyase, EC 4.1.3.1) and malate synthase (L-malate glyoxylate-lyase (CoA-acetylating) EC 4.1.3.2), were investigated in Leptospira biflexa. Isocitrate lyase activity was found for the first time in the organism. The enzyme was induced by ethanol but not by acetate. The optimum pH was 6.8. The activity was inhibited by phosphoenolpyruvate, a specific inhibitor of isocitrate lyase. The optimum pH of malate synthase of L. biflexa was about 8.5. The Km value for glyoxylate was 3.0 × 10?3 M and the activity was inhibited by glycolate, the inhibitor. The results strongly suggested the presence of a glyoxylate cycle in Leptospira. The possibility that the glyoxylate cycle plays an essential role in the synthesis of sugars, amino acids and other cellular components as an anaplerotic pathway of the tricarboxylic acid cycle in Leptospira was discussed.  相似文献   

12.
13.
Enzymes of the glyoxylate cycle in rhizobia and nodules of legumes   总被引:19,自引:9,他引:10       下载免费PDF全文
The relatively high level of fatty acids in soybean nodules and rhizobia from soybean nodules suggested that the glyoxylate cycle might have a role in nodule metabolism. Several species of rhizobia in pure culture were found to have malate synthetase activity when grown on a number of different carbon sources. Significant isocitrate lyase activity was induced when oleate, which presumably may act as an acetyl CoA precursor, was utilized as the principle carbon source. Malate synthetase was active in extracts of rhizobia from nodules of bush bean (Phaseolus vulgaris L.), cowpea (Vigna sinensis L.), lupine (Lupinus angustifolius L.) and soybean (Glycine max L. Merr.). Activity of malate synthetase was, however, barely detectable in rhizobia from alfalfa (Medicago sativa L.), red clover (Trifolium pratense L.) and pea (Pisum sativum L.) nodules. Appreciable isocitrate lyase activity was not detected in rhizobia from nodules nor was it induced by depletion of endogenous substrates by incubation of excised bush bean nodules. Although rhizobia has the potential for the formation of the key enzymes of the glyoxylate cycle, the absence of isocitrate lyase activity in bacteria isolated from nodules indicated that the glyoxylate cycle does not operate in the symbiotic growth of rhizobia and that the observed high content of fatty acids in nodules and nodule bacteria probably is related to a structural role.  相似文献   

14.
Monospecific antibodies raised against four glyoxysomal enzymes (isocitrate lyase, catalase, malate synthase, and malate dehydrogenase) have been used to detect these proteins among the products of in vitro translation in a wheat germ system programmed with cotyledonary RNA from cucumber seedlings. In vitro immunoprecipitates were compared electrophoretically with the same enzymes labeled in vivo and also with the purified proteins. Isocitrate lyase yields two bands on sodium dodecyl sulfate-polyacrylamide gels, as synthesized both in vitro (61.5K and 60K products) and in vivo (63K and 61.5K polypeptides). Both the 63K and 61.5K subunits can also be demonstrated for the isolated enzyme. The two subunits are antigenically cross-reactive and yield similar electrophoretic profiles upon partial proteolytic digestion. A larger subunit is seen in vitro than in vivo for both malate dehydrogenase (38K versus 33K) and catalase (55K versus 54K); this suggests a need for processing which is often a characteristic of proteins that must be transported across or into membranes. Malate synthase has a molecular weight of 57K both in vitro and in vivo, but the isolated enzyme is a glycoprotein, containing N-acetyl glucosamine, mannose, and possibly also fucose and xylose. This indicates that the polypeptide portion of the isolated enzyme is smaller than the in vitro product and suggests processing of malate synthase also. None of the other three enzymes appears to be glycosylated. The implications of these size differences for the compartmentalization of matrix and membrane-bound glyoxysomal enzymes are discussed.  相似文献   

15.
Oo KC  Stumpf PK 《Plant physiology》1983,73(4):1028-1032
In germinating oil palm (Elaeis guineensis var D × P) seedling, an active lipase was present in the shoot but absent from both the kernel and the haustorium. It has an optimum pH of 6.2 and a smaller peak at pH 8.6. The shoot lipase was active against a number of mono-, di-, and triacylglycerols as well as the endogenous lipids present in the shoot, haustorium, and kernel. Activity against related substrates were in the order: trilaurin > dilaurin > monolaurin but monopalmitin > dipalmitin > tripalmitin. The level of the enzyme in the seedling was highest at a relatively early stage of growth (18-21 days) and also higher in dark-grown seedlings. Glyoxylate bypass enzymes (malate synthetase and isocitrate lyase), glutamate-oxaloacetate transaminase, phosphoenolpyruvate carboxykinase and lauroyl-coenzyme A oxidase were located in the haustorium. The levels of the enzymes paralleled seedling development and were slightly higher in light-grown seedlings. Fatty acyl-coenzyme A synthetase activity was very low and was found in both the shoot and haustorium.  相似文献   

16.
Studies have been made of the regulation of the synthesis of six purine biosynthetic enzymes: P-ribosyl-PP amidotransferase (I), P-ribosyl glycinamide synthetase (II), P-ribosyl formyl glycinamide amidotransferase (IV), adenylosuccinate lyase (VIII-IIA), adenylosuccinate synthetase (IA), and IMP dehydrogenase (IG). Wild type Aerobacter aerogenes and two purine requiring mutants derived from it, were grown with limiting or excess adenine or guanine, cell extracts prepared, and enzyme activities measured.  相似文献   

17.
The ability of Romanomermis culicivorax preparasites to penetrate and infect Psorophora columbiae decreased substantially after ca. 28 hours. Parasitism at temperatures typical of Louisiana rice fields (i.e., 26, 29, and 32 ± 0.5 C) showed a significant linear decrease (P < 0.01) as the percentage of older larval instars increased at the times of exposure. These data emphasize the need for a synchronous field application of preparasites to challenge the rapid development of early instars of Ps. columbiae. Applications of postparasites rather than insecticide treatments to potential mosquito breeding habitats may offer greater flexibility in larval mosquito control programs.  相似文献   

18.
Isocitrate lyase was partially purified from germinating spores of the fern Anemia phyllitidis. The enzyme requires Mg2+ and thiol compounds for maximal activity and has a pH optimum between 6.5 and 7.5. The Km of the enzyme for threo-Δs-isocitrate is 0.5 mM. Succinate inhibits the enzyme non-competitively (Ki. 1.8 mM). The increase of isocitrate lyase activity is closely correlated with the induction of the germination process. The fall of enzyme activity during germination is associated with the decline in triglyceride reserves.  相似文献   

19.
SYNOPSIS. Cell-free extracts of encysting Acanthamoeba were assayed for the key enzymes of the glyoxylate pathway, viz., isocitrate lyase and malate synthase. Both enzymes were present at the onset of encystment but their activities changed as cyst-wall formation proceeded to completion. Isocitrate lyase activity decreased during the first 4 hr of encystment to a minimum at 4 hr which was 70% of its initial activity. Activity then increased reaching a maximum at 9 hr which was 144% of its initial activity. After 9 hr a decrease in isocitrate lyase activity began which reached 70% of its initial activity at 35 hr. Malate synthase activity slowly decreased throughout encystment to 50% of its initial activity after 35 hr. From these data and others cited, it is concluded that this small soil amoeba has a functional glyoxylate pathway.  相似文献   

20.
The metabolic fate of acetate, produced during taurine catabolism in Pseudomonas aeruginosa TAU-5, appear to involve the glyoxylate cycle. Organisms grown on taurine have significantly higher levels of malate synthetase and isocitrate lyase than cells grown on nutrient broth, but were comparable to the levels found in acetate-grown organisms. Itaconate, an isocitrate lyase inhibitor, produced a prolonged lag phase and reduced the growth rate of organisms when it was present in the taurine or acetate growth medium. Ethylmethanesulfonate treatment of TAU-5 yielded mutant strains unable to grow on taurine or acetate as sole carbon sources, due to a lack of either malate synthetase or isocitrate lyase. Spontaneous revertants derived from these mutant strains regained the missing enzyme activity and the ability to grow on taurine or acetate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号