首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of Meloidogyne incognita on the growth and water relations of cotton were evaluated in a 2-year field study. Microplots containing methyl bromide-fumigated fine sandy loam soil were infested with the nematode and planted to cotton (Gossypium hirsutum L.). Treatments included addition of nematodes alone, addition of nematodes plus the insecticide-nematicide aldicarb (1.7 kg/ha), and an untreated control. Meloidogyne incognita population densities reached high levels in both treatments where nematodes were included. Root galling, plant height at harvest, and seed cotton yield were decreased by nematode infection. In older plants (89 days after planting [DAP]), leaf transpiration rates and stomatal conductance were reduced, and leaf temperature was increased by nematode infection. Nematode infection did not affect (P = 0.05) leaf water potential in either young or older plants but lowered the osmotic potential. The maximum rate and cumulative amount of water flowing through intact plants during a 24-hour period were lower, on both a whole-plant and per-unit-leaf-area basis, in infected plants than in control plants. Application of aldicarb moderated some of the nematode effects but did not eliminate them.  相似文献   

2.
The efficacy of abamectin as a seed treatment for control of Meloidogyne incognita on cotton was evaluated in greenhouse, microplot, and field trials in 2002 and 2003. Treatments ranging from 0 to 100 g abamectin/100 kg seed were evaluated. In greenhouse tests 35 d after planting (DAP), plants from seed treated with abamectin were taller than plants from nontreated seed, and root galling severity and nematode reproduction were lower where treated seed were used. The number of second stage juveniles that had entered the roots of plants from seed treated with 100 g abamectin/kg seed was lower during the first 14 DAP than with nontreated seed. In microplots tests, seed treatment with abamectin and soil application of aldicarb at 840 g/kg of soil reduced the number of juveniles penetrating seedling roots during the first 14 DAP compared to the nontreated seedlings. In field plots, population densities of M. incognita were lower 14 DAP in plots that received seed treated with abamectin at 100 g/kg seed than where aldicarb (5.6 kg/ha) was applied at planting. Population densities were comparable for all treatments, including the nontreated controls, at both 21 DAP and harvest. Root galling severity did not differ among treatments at harvest.  相似文献   

3.
Greenhouse and field microplot studies were conducted to compare soybean shoot and root growth responses to root penetration by Heterodera glycines (Hg) and Meloidogyne incognita (Mi) individually and in combination. Soybean cultivars Centennial (resistant to Hg and Mi), Braxton (resistant to Mi, susceptible to Hg), and Coker 237 (susceptible to Hg and Mi) were selected for study. In the greenhouse, pot size and number of plants per pot had no effect on Hg or Mi penetration of Coker 237 roots; root weight was higher in the presence of either nematode species compared with the noninoculated controls. In greenhouse studies using a sand or soil medium, and in field microplot studies, each cultivar was grown with increasing initial population densities (Pi) of Hg or Mi. Interactions between Hg and Mi did not affect early plant growth or number of nematodes penetrating roots. Root penetration was the only response related to Pi. Mi penetration was higher in sand than in soil, and higher in the greenhouse than in the field, whereas Hg penetration was similar under all conditions. At 14 days after planting, more second-stage juveniles were present in roots of susceptible than in roots of resistant plants. Roots continued to lengthen in the greenhouse in the presence of either Mi or Hg regardless of host genotype, but only in the presence of Mi in microplots; otherwise, responses in field and greenhouse studies were similar and differed only in magnitude and variability.  相似文献   

4.
Inula viscosa is a perennial plant that is widely distributed in Mediterranean countries. Formulations of I. viscosa extracts were tested for their effectiveness in control of Meloidogyne javanica in laboratory, growth chamber, microplot, and field experiments. Oily pastes were obtained by extraction of dry leaves with a mixture of acetone and n-hexane or n-hexane alone, followed by evaporation of the solvents. Emulsifiable concentrate formulations of the pastes killed M. javanica juveniles in sand at a concentration of 0.01% (paste, w/w) or greater and reduced the galling index of cucumber seedlings as well as the galling index and numbers of nematode eggs on tomato plants in growth chamber experiments. In microplot experiments, the hexane-extract formulation at 26 g paste/m2 reduced nematode infection on tomato plants in one of two experiments. In a field experiment, a reduction of 40% in root galling index by one of two formulations was observed on lettuce plants. The plant extracts have potential as a natural nematicide, although the formulations need improvement.  相似文献   

5.
The potential of Pasteuria penetrans for suppressing Meloidogyne arenaria race 1 on peanut (Arachis hypogaea) was tested over a 2-year period in a field microplot experiment. Endospores of P. penetrans were mass-produced on M. arenaria race 1 infecting tomato plants. Endospores were inoculated in the first year only at rates of 0, 1,000, 3,000, 10,000, and 100,000 endospores/g of soil, respectively, into the top 20 cm of microplots that were previously infested with M. arenaria race 1. One peanut seedling was planted in each microplot. In the first year, root gall indices and pod galls per microplot were significantly reduced by 60% and 95% for 100,000 endospores/g of soil, and 20% and 65% for 10,000 endospores/g of soil, respectively. Final densities of second-stage juveniles (J2) in soil were not significantly different among the treatments. The number of endospores attached to J2 and percentage of J2 with attached endospores significantly increased with increasing endospore inoculation levels. Pasteuria penetrans significantly reduced the densities of J2 that overwintered. In the second year, root and pod gall indices, respectively, were significantly reduced by 81% and 90% for 100,000 endospores/g of soil, and by 61% and 82% of 10,000 endospores/g of soil. Pod yields were significantly increased by 94% for 100,000 and by 57% for 10,000 endospores/g of soil, respectively. The effect of P. penetrans on final densities of J2 in soil was not significant. Regression analyses verified the role of P. penetrans in the suppression of M. arenaria. The minimum number of endospores required for significantly suppressing M. arenaria race 1 on peanut was 10,000 endospores/g of soil.  相似文献   

6.
A polymer sticker was used as a coating in which oxamyl was applied to seeds of alfalfa cultivar Saranac for the control of Pratylenchus penetrans and Meloidogyne hapla. The sticker, diluted 1:1 (sticker:water) to 1:5, delayed seedling emergence during the first 4 days after planting. By day 13, however, emergence from all sticker treatments was comparable to the control. Shoot growth of seedlings at day 21 was less than that of the control only from seeds coated with a 1:1 dilution; root growth and nodulation were not affected. Sticker-coated seeds absorbed 30-58% as much water in 3.5 hours as was absorbed by uncoated seeds. Oxamyl concentrations of 40-160 mg/ml in a 1:5 sticker : water mixture had no adverse affect on seedling emergence, growth, and nodulation over 3 weeks. Oxamyl at 160 mg/ml was more effective against P. penetrans than M. hapla. Growth of alfalfa in P. penetrans-infested soil was greater than that of the control in each sampling for 11 weeks. The reduction of number of P. penetrans in soil and roots moderated slowly over 11 weeks from 90% to 60%. Shoot and root growth of alfalfa from oxamyl-coated seed in M. hapla-infested soil were greater than those of the control for 7 and 11 weeks, respectively. The reduction in the number of M. hapla in the soil and roots changed from 80% at 7 weeks to 15% at 11 weeks.  相似文献   

7.
Yield-loss models were developed for tobacco infected with Meloidogyne incognita grown in microplots under various irrigation regimes. The rate of relative yield loss per initial nematode density (Pi), where relative yield is a proportion of the value of the harvested leaves in uninfected plants with the same irrigation treatment, was greater under conditions of water stress or with high irrigation than at an intermediate level of soil moisture. The maximum rate of plant growth per degree-day (base 10 C) was reduced as nematode Pi increased when plots contained adequate water. When plants were under water stress, increasing Pi did not luther reduce the maximum rate of plant growth (water stress was the limiting factor). Cumulative soil matric potential values were calculated to describe the relationship between available water in the soil (matric potential) due to the irrigation treatments and subsequent plant growth.  相似文献   

8.
Most of the 15 carrot cultivars tested were moderate to good hosts to Meloidogyne chitwoodi race 1, whereas all except Orlando Gold were nonhosts or poor hosts for M. chitwoodi race 2. All carrot cultivars were good hosts for M. hapla. The plant weights of the carrot cultivars Red Cored Chantenay and Orlando Gold infected with either race of M. chitwoodi were significantly less than uninoculated checks in pots. Under field microplot conditions, however, detrimental effects on quality were rarely observed. M. hapla was pathogenic to both cultivars in the greenhouse and the field. The tolerance level of Orlando Gold to M. hapla was lower than Red Cored Chantenay.  相似文献   

9.
Meloidogyne incognita and Meloidogyne arenaria are important parasitic nematodes of vegetable and ornamental crops. Microplot and greenhouse experiments were conducted to test commercial formulations of the biocontrol agent Pasteuria penetrans for control of M. incognita on tomato and cucumber and M. arenaria on snapdragon. Three methods of application for P. penetrans were assessed including seed, transplant, and post-plant treatments. Efficacy in controlling galling and reproduction of the two root-knot nematode species was evaluated. Seed treatment application was assessed only for M. incognita on cucumber. Pasteuria treatment rates of a granular transplant formulation ranged from 1.5 × 105 endospores/cm3 to 3 × 105 endospores/cm3 of transplant mix applied at seeding. Additional applications of 1.5 × 105 endospores/cm3 of soil were applied as a liquid formulation to soil post-transplant for both greenhouse and microplot trials. In greenhouse cucumber trials, all Pasteuria treatments were equivalent to steamed soil for reducing M. incognita populations in roots and soil, and reducing nematode reproduction and galling. In cucumber microplot trials there were no differences among treatments for M. incognita populations in roots or soil, eggs/g root, or root condition ratings. Nematode reproduction on cucumber was low with Telone II and with the seed treatment plus post-plant application of Pasteuria, which had the lowest nematode reproduction. However, galling for all Pasteuria treatments was higher than galling with Telone II. Root-knot nematode control with Pasteuria in greenhouse and microplot trials varied on tomato and snapdragon. Positive results were achieved for control of M. incognita with the seed treatment application on cucumber.  相似文献   

10.
A microplot study under field conditions was carried out during 2 consecutive years to assess the effect of root-knot nematode infection (2,000 Meloidogyne incognita eggs/kg soil) on three winter ornamental plants: hollyhock (Althea rosea), petunia (Petunia hybrida), and poppy (Papaver rhoeas). Effects of root-dip treatment with the biocontrol agents Pochonia chlamydosporia, Bacillus subtilis, and Pseudomonas fluorescens and the nematicide fenamiphos were tested. The three ornamental species were highly susceptible to M. incognita, developing 397 and 285 (hollyhock), 191 and 149 (petunia), and 155 and 131 (poppy) galls and egg masses per root system, respectively, and exhibited 37% (petunia), 29% (poppy), and 23% (hollyhock) (P = 0.05) decrease in the flower production. Application of fenamiphos, P. chlamydosporia, P. fluorescens, and B. subtilis suppressed nematode pathogenesis (galls + egg masses) by 64%, 37%, 27%, and 24%, respectively, leading to 14% to 29%, 7% to 15%, 14% to 36%, and 7% to 33% increase in the flower production of the ornamental plants, respectively. Treatment with P. fluorescens also increased the flowering of uninfected plants by 11% to 19%. Soil population of M. incognita was decreased (P = 0.05) due to various treatments from 2 months onward, being greatest with fenamiphos, followed by P. chlamydosporia, B. subtilis, and P. fluorescens. Frequency of colonization of eggs, egg masses, and females by the bioagents was greatest by P. chlamydosporia, i.e., 25% to 29%, 47% to 60%, and 36% to 41%, respectively. Colonization of egg masses by B. subtilis and P. fluorescens was 28% to 31% and 11% to 13%, respectively, but the frequency was 0.3% to 1.3% in eggs. Rhizosphere population of the bioagents was increased (P = 0.05) over time, being usually greater in the presence of nematode.  相似文献   

11.
Seven-day-old seedlings of two cultivars (Cristalina and UFV ITM1) of Glycine max were inoculated with 0, 3,000, 9,000, or 27,000 eggs of Meloidogyne incognita race 3 or M. javanica and maintained in a greenhouse. Thirty days later, plants were exposed to ¹⁴CO₂ for 4 hours. Twenty hours after ¹⁴CO₂ exposure, the root fresh weight, leaf dry weight, nematode eggs per gram of root, total and specific radioactivity of carbohydrates in roots, and root carbohydrate content were evaluated. Meloidogyne javanica produced more eggs than M. incognita on both varieties. A general increase in root weight and a decrease in leaf weight with increased inoculum levels were observed. Gall tissue appeared to account for most of the root mass increase in seedlings infected with M. javanica. For both nematodes there was an increase of total radioactivity in the root system with increased levels of nematodes, and this was positively related to the number of eggs per gram fresh weight and to the root fresh weight, but negatively related to leaf dry weight. In most cases, specific radioactivities of sucrose and reducing sugars were also increased with increased inoculum levels. Highest specific radioactivities were observed with reducing sugars. Although significant changes were not observed in endogenous levels of carbohydrates, sucrose content was higher than reducing sugars. The data show that nematodes are strong metabolic sinks and significantly change the carbon distribution pattern in infected soybean plants. Carbon partitioning in plants infected with nematodes may vary with the nematode genotype.  相似文献   

12.
Several factors were studied to determine their effects on hatch and emergence of second-stage juveniles (J2) from cysts of Heterodera zeae. The optimum temperature for emergence of J2 from cysts of H. zeae was 30 C. No juveniles emerged from cysts at 10 or 40 C. Immersion of cysts in 4 mM zinc chloride solution stimulated 10% greater emergence of J2 than occurred in tap water controls during 28 days. Fresh corn rhizosphere leachates from 25-day and older plants growing in sand or sandy field soil stimulated 22-24% greater emergence of J2 from cysts than occurred in tap water after 28 days. Rhizosphere leachates stored for 30 days at 4 C and leachates of sand, sandy field soil, and silty field soil inhibited emergence of J2 from cysts by 7-12% compared to tap water. Rhizosphere leachates from corn plants aged 20, 30, 40, 50, or 60 days growing in sandy field soil stimulated emergence of J2 from cysts. Similar numbers of J2 emerged from cysts regardless of whether the source of cysts was field microplot cultures, greenhouse cultures, or growth chamber cultures. Fertilizing growth chamber cultures of H. zeae on corn plants resulted in a doubling of the numbers of cysts produced in the cultures, and those cysts yielded 2-3 times as many emerged J2 in hatching tests compared to cysts from similar unfertilized cultures.  相似文献   

13.
Advance inoculation of the tomato cv. Celebrity or the pyrethrum clone 223 with host-incompatible Meloidogyne incognita or M. javanica elicited induced resistance to host-compatible M. hapla in pot and field experiments. Induced resistance increased with the length of the time between inoculations and with the population density of the induction inoculum. Optimum interval before challenge inoculation, or population density of inoculum for inducing resistance, was 10 days, or 5,000 infective nematodes per 500-cm³ pot. The induced resistance suppressed population increase of M. hapla by 84% on potted tomato, 72% on potted pyrethrum, and 55% on field-grown pyrethrum seedlings, relative to unprotected treatments. Pyrethrum seedlings inoculated with M. javanica 10 days before infection with M. hapla were not stunted, whereas those that did not receive the advance inoculum were stunted 33% in pots and 36% in field plots. The results indicated that advance infection of plants with incompatible or mildly virulent nematode species induced resistance to normally compatible nematodes and that the induced resistance response may have potential as a biological control method for plant nematodes.  相似文献   

14.
Population dynamics of Meloidogyne chitwoodi were studied for 2 years in a commercial potato field and microplots. Annual second-stage juvenile (J2) densities peaked at harvest in mid-fall, declined through the winter, and were lowest in early summer. In the field and in one microplot study, population increase displayed trimodal patterns during the 1984 and 1985 seasons. Overwintering nematodes produced egg masses on roots by 600-800 degree-days base 5 C (DD₅) after planting. Second-generation and third-generation eggs hatched by 950-1,100 DD₅ and 1,500-1,600 DD₅, respectively, and J2 densities rapidly increased in the soil. A fourth generation was observed at 2,150 DD₅ in 1985 microplot studies. Tubers were initiated by 450-500 DD₅, but J2 were not observed in the tubers until after the second generation hatched at 988-1,166 DD₅. A second period of tuber invasion was observed when third generation J2 hatched. The regional variation in M. chitwoodi damage on potato may be explained by degree-day accumulation in different potato production regions of the western United States.  相似文献   

15.
Meloidogyne partityla is a parasite of pecan and walnut. Our objective was to determine interactions between the entomopathogenic nematode-bacterium complex and M. partityla. Specifically, we investigated suppressive effects of Steinernema feltiae (strain SN) and S. riobrave (strain 7–12) applied as infective juveniles and in infected host insects, as well as application of S. feltiae''s bacterial symbiont Xenorhabdus bovienii on M. partityla. In two separate greenhouse trials, the treatments were applied to pecan seedlings that were simultaneously infested with M. partityla eggs; controls received only water and M. partityla eggs. Additionally, all treatment applications were re-applied (without M. partityla eggs) two months later. Four months after initial treatment, plants were assessed for number of galls per root system, number of egg masses per root system, number of eggs per root system, number of eggs per egg mass, number of eggs per gram dry root weight, dry shoot weight, and final population density of M. partityla second-stage juveniles (J2). In the first trial, the number of egg masses per plant was lower in the S. riobrave-infected host treatment than in the control (by approximately 18%). In the second trial, dry root weight was higher in the S. feltiae-infected host treatment than in the control (approximately 80% increase). No other treatment effects were detected. The marginal and inconsistent effects observed in our experiments indicate that the treatments we applied are not sufficient for controlling M. partityla.  相似文献   

16.
Microplot and field experiments were conducted to determine the effects of two vesicular-arbuscular mycorrhizal (VAM) fungi, Glomus intraradices (Gi) and Gigaspora margarita (Gm), and dicalcium phosphate (P) on Meloidogyne incognita (Mi) reproduction and seed cotton yield of the Mi-susceptible cotton cultivar, Stoneville 213. In 1983 population densities of Mi juveniles were significantly lower 60 and 90 days after planting in microplots receiving Gi. Mycorrhizal fungi reduced the severity of yield losses to Mi, whereas P fertilization increased yield losses to Mi. In 1984 microplot yields were reduced linearly as nematode inoculum densities increased in treatments of Mi alone, Gm, or P, but the response was curvilinear with Gi. Yield suppressions in the 1984 field experiment occurred only in plots infested with Mi alone. In the 1984 microplots, numbers of Mi juveniles penetrating seedling roots increased Iinearly with increasing nematode inoculum densities and was favored when mycorrhizal fungi or superphosphate were added. Juvenile penetration of roots was negatively correlated with yields in all treatments (r = -0.54 to -0.81) except Gm and with number of bolls in Mi alone (r = -0.85) and P (r = -0.81) treatments. Mycorrhizal fungi can increase host tolerance to M. incognita in field conditions and may function as important biological control agents in soils infested with high population densities of efficient VAM species.  相似文献   

17.

Background and Aims

The growth–differentiation balance hypothesis (GDBH) states that there is a physiological trade-off between growth and secondary metabolism and predicts a parabolic effect of resource availability (such as water or nutrients) on secondary metabolite production. To test this hypothesis, the response of six Patagonian Monte species (Jarava speciosa, Grindelia chiloensis, Prosopis alpataco, Bougainvillea spinosa, Chuquiraga erinacea and Larrea divaricata) were investigated in terms of total biomass and resource allocation patterns in response to a water gradient.

Methods

One-month-old seedlings were subjected to five water supply regimes (expressed as percentage dry soil weight: 13 %, 11 %, 9 %, 7 % or 5 % – field water capacity being 15 %). After 150 d, plants were harvested, oven-dried and partitioned into root, stem and leaf. Allometric analysis was used to correct for size differences in dry matter partitioning. Determinations of total phenolics (TP), condensed tannins (CT), nitrogen (N) and total non-structural carbohydrates (TNC) concentrations were done on each fraction. Based on concentrations and biomass data, contents of TP and CT were estimated for whole plants, and graphical vector analysis was applied to interpret drought effect.

Key Results

Four species (J. speciosa, G. chiloensis, P. alpataco and B. spinosa) showed a decrease in total biomass in the 5 % water supply regime. Differences in dry matter partitioning among treatments were mainly due to size variation. Concentrations of TP, CT, N and TNC varied little and the effect of drought on contents of TP and CT was not adequately predicted by the GDBH, except for G. chiloensis.

Conclusions

Water stress affected growth-related processes (i.e. reduced total biomass) rather than defence-related secondary metabolism or allocation to different organs in juvenile plants. Therefore, the results suggest that application of the GDBH to plants experiencing drought-stress should be done with caution, at least for Patagonian Monte species.  相似文献   

18.
A series of controlled-environment experiments were conducted to elucidate the effects of Meloidogyne incognita on host physiology and plant-water relations of two cotton (Gossypium hirsutum) cultivars that differed in their susceptibility to nematode infection. Inoculation of M. incognita-resistant cultivar Auburn 634 did not affect growth, stomatal resistance, or components of plant-water potential relative to uninoculated controls. However, nematode infection of the susceptible cultivar Stoneville 506 greatly suppressed water flow through intact roots. This inhibition exceeded 28% on a root-length basis and was similar to that observed as a consequence of severe water stress in a high evaporative demand environment. Nematodes did not affect the components of leaf water potential, stomatal resistance, transpiration, or leaf temperature. However, these factors were affected by the interaction of M. incognita and water stress. Our results indicate that M. incognita infection may alter host-plant water balance and may be a significant factor in early-season stress on cotton seedlings.  相似文献   

19.
A soybean cyst nematode sex pheromone (vanillic acid), chemical analogs of the pheromone, and the fungus Verticillium lecanii were applied in alginate prills (340 kg/ha) to microplots and small-scale field plots as potential management agents for Heterodera glycines on soybean. In 1991 microplot tests, treatment with V. lecanii, vanillic acid, syringic acid plus V. lecanii, or vanillic acid plus V. lecanii lowered midseason cyst numbers compared with the untreated susceptible cultivar control, autoclaved V. lecanii treatment, or aldicarb treatment, At-harvest cyst numbers were lowest with V. lecanii and with vanillic acid treatments. Aldicarb treatment reduced midseason cyst numbers in 1992. There were no differences among seed yields either year. In the field trials, numbers of cysts were reduced one or both years with aldicarb, ferulic acid, syringic acid, vanillic acid, or 4-hydroxy-3-methoxybenzonitfile treatments, or with a resistant cultivar, compared to an untreated susceptible cultivar. Highest yields were recorded after treatment with 4-hydroxy-3-methoxybenzonitrile (1991), methyl vanillate (1992), and aldicarb (1992). These studies indicate that some chemical analogs of vanillic acid have potential for use in soybean cyst nematode management schemes.  相似文献   

20.
Greenhouse tests were conducted to evaluate (i) the effect of Meloidogyne incognita infection in cotton on plant growth and physiology including the height-to-node ratio, chlorophyll content, dark-adapted quantum yield of photosystem II, and leaf area; and (ii) the extent to which moderate or high levels of resistance to M. incognita influenced these effects. Cultivars FiberMax 960 BR (susceptible to M. incognita) and Stoneville 5599 BR (moderately resistant) were tested together in three trials, and PD94042 (germplasm, susceptible) and 120R1B1 (breeding line genetically similar to PD94042, but highly resistant) were paired in two additional trials. Inoculation with M. incognita generally resulted in increases in root gall ratings and egg counts per gram of root compared with the noninoculated control, as well as reductions in plant dry weight, root weight, leaf area, boll number, and boll dry weight, thereby confirming that growth of our greenhouse-grown plants was reduced in the same ways that would be expected in field-grown plants. In all trials, M. incognita caused reductions in height-to-node ratios. Nematode infection consistently reduced the area under the height-to-node ratio curves for all genotypes, and these reductions were similar for resistant and susceptible genotypes (no significant genotype × inoculation interaction). Our study is the first to show that infection by M. incognita is associated with reduced chlorophyll content in cotton leaves, and the reduction in the resistant genotypes was similar to that in the susceptible genotypes (no interaction). The susceptible PD94042 tended to have increased leaf temperature compared with the genetically similar but highly resistant 120R1B1 (P < 0.08), likely attributable to increased water stress associated with M. incognita infection.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号