首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1. Protyrosinase from the egg of the grasshopper, Melanoplus differentialis, can be activated by excess sodium oleate or Aerosol. 2. The 3:4 quinone products of the reaction of activated protyrosinase with tyramine or tyrosine will oxidize ascorbic acid to dehydroascorbic acid. 3. The velocity of this latter oxidation of ascorbic acid increases with the amount of tyramine or tyrosine. 4. The oxidation of ascorbic acid by the tyramine-tyrosinase reaction delays the time of appearance of a red color associated with an indole quinone intermediary product in the formation of melanin. 5. Protyrosinase, in itself, and in the presence of tyrosinase substrates does not bring about the oxidation of ascorbic acid. 6. A naturally occurring substrate in a preparation of protyrosinase, sufficient to cause the oxidation of ascorbic acid, can be removed by dialysis against a 0.9 per cent sodium chloride solution. 7. Dialysis against such a solution does not change the properties of protyrosinase; the inactive enzyme must still be activated before it will catalyze the oxidation of tyramine or tyrosine. 8. When the natural substrate, tyrosine, or tyramine is absent, activation of protyrosinase does not result in the oxidation of ascorbic acid.  相似文献   

2.
3.
4.
5.
1. Two proteins of the globulin type, serum globulin and tuberin, and the protein of milk, casein, have been purified (a) of the other proteins and (b) of the inorganic electrolytes with which they exist in nature. The methods that were employed are described. 2. All three proteins were found to be only very slightly soluble in water in the pure uncombined state. The solubility of each was accurately measured at 25.0° ± 0.1°C. The most probable solubility of the pseudoglobulin of serum was found to be 0.07 gm. in 1 liter; of tuberin 0.1 gm. and of casein 0.11 gm. The methods that were employed in their determination are described. 3. Each protein investigated dissolved in water to a constant and characteristic extent when the amount of protein precipitate with which the solution was in heterogeneous equilibrium was varied within wide limits. The solubility of a pure protein is therefore proposed as a fundamental physicochemical constant, which may be used in identifying and in classifying proteins. 4. The concentration of protein dissolved must be the sum of the concentration of the undissociated protein molecule which is in heterogeneous equilibrium with the protein precipitate, and of the concentration of the dissociated protein ions. 5. The dissociated ions of the dissolved protein give a hydrogen ion concentration to water that is also a characteristic of each protein.  相似文献   

6.
The state in which a protein substance exists depends upon the nature of its combination with acids or bases and is changed by change in the protein compound. The nature of the compound of a protein that exists at any hydrogen ion concentration can be ascertained if the isoelectric point of the protein is known. Accordingly information regarding the isoelectric points of vegetable proteins is of importance for operations in which it may be desirable to change the state of protein substances, as in the dehydration of vegetables. The Protein in Potato Juice.—The hydrogen ion concentration of the filtered juice of the potato is in the neighborhood of 10–7 N. Such juice contains the globulin tuberin to the extent of from 1 to 2 per cent. The character of the compound of tuberin that exists in nature was suggested by its anodic migration in an electric field. The addition of acid to potato juice dissociated this compound and liberated tuberin at its isoelectric point. The isoelectric point of tuberin coincided with a slightly lower hydrogen ion concentration than 10–4 N. At that reaction it existed most nearly uncombined. The flow of current during cataphoresis was greatest in the neighborhood of the isoelectric point. This evidence supplements that of the direction of the migration of tuberin, since it also suggests the existence of the greatest number of uncombined ions near this point. At acidities greater than the isoelectric point tuberin combined with acid. The compound that was formed contained nearly three times as much acid as was needed to dissociate the tuberin compound that existed in nature. At such acidities tuberin migrated to the cathode. Though never completely precipitated tuberin was least soluble in the juice of the potato in the neighborhood of its isoelectric point. Both the compounds of tuberin with acids and with bases were more soluble in the juice than was uncombined tuberin. The nature of the slight precipitate that separated when potato juice was made slightly alkaline was not determined. The Protein in Carrot Juice.—The isoelectric point of the protein in carrot juice coincided with that of tuberin. Remarkably similar also were the properties of carrot juice and the juice of the potato. Existing in nature at nearly the same reaction they combined with acids and bases to nearly the same extent and showed minima in solubility at the same hydrogen ion concentrations. The greatest difference in behavior concerned the alkaline precipitate which, in the carrot, was nearly as great as the acid precipitate. The Protein in Tomato Juice.—The protein of the tomato existed in a precipitated form near its isoelectric point. Accordingly it was not present to any extent in filtered tomato juice. If, however, the considerable acidity at which the tomato exists was neutralized the protein dissolved and was filterable. It then migrated to the anode in an electric field. The addition of sufficient acid to make the hydrogen ion concentration slightly greater than 10–5 N again precipitated the protein at its isoelectric point. At greater acidities migration was cathodic.  相似文献   

7.
8.
9.
10.
1. The solvent action of a neutral salt upon a protein, oxyhemoglobin, has been found identical to the solvent action of a neutral salt upon a bi-bivalent or uni-quadrivalent compound. 2. The solubility of oxyhemoglobin in phosphate solutions of varying ionic strength has been defined by the equation: log See PDF for Equation in which µ is the ionic strength, and S 0 is the solubility in the absence of salt. 3. The values of S 0 have been calculated to be 12.2, 11.2, and 13.1 gm. per liter respectively at pH 6.4, 6.6, and 6.8. 4. The relatively great solubility of oxyhemoglobin in water has been ascribed to the strong affinity constants for acid and base of certain groups in oxyhemoglobin. 5. The small change in the solubility of oxyhemoglobin effected by neutral salts suggests that but few such groups are dissociated in oxyhemoglobin in the state in which it crystallizes near its isoelectric point. 6. Certain of the other properties of oxyhemoglobin, such as its low viscosity, are considered in the light of its molecular weight and its valence type.  相似文献   

11.
12.
Abstract— Changes in the activities of several specific enzymes were measured in the cerebellum during development. Early transient increases were found in both ornithine decarboxylase and S -adenosylmethionine decarboxylase, enzymes involved in the initial steps of polyamine synthesis. Different patterns of changes were found in neurotransmitter synthesizing enzymes. Tyrosine hydroxylase activity achieved adult levels very early, by 3 days after birth, and remained at this level. Glutamic acid decarboxylase activity, while very low at early stages, increased rapidly before birth and then after a lag period of 10 days started to increase rapidly, directly related to the general growth of cerebellar weight and protein content. Choline acetyltransferase activity started to increase rapidly, reaching a peak of about 100% of adult levels at 3-7 days after birth; the activity then gradually declined and at 20 days, after reaching a low of about 55% of adult values, gradually started to increase, reaching adult levels later than 40 days after birth. The development of protein carboxymethylase activity was similar to that of glutamic acid decarboxylase, directly related to the general growth of the cerebellum. Several interpretations of the results are discussed.  相似文献   

13.
1. Ions with the opposite sign of charge as that of a protein ion diminish the swelling, osmotic pressure, and viscosity of the protein. Ions with the same sign of charge as the protein ion (with the exception of H and OH ions) seem to have no effect on these properties as long as the concentrations of electrolytes used are not too high. 2. The relative depressing effect of different ions on the physical properties of proteins is a function only of the valency and sign of charge of the ion, ions of the same sign of charge and the same valency having practically the same depressing effect on gelatin solutions of the same pH while the depressing effect increases rapidly with an increase in the valency of the ion. 3. The Hofmeister series of ions are the result of an error due to the failure to notice the influence of the addition of a salt upon the hydrogen ion concentration of the protein solution. As a consequence of this failure, effects caused by a variation in the hydrogen ion concentration of the solution were erroneously attributed to differences in the nature of the ions of the salts used. 4. It is not safe to draw conclusions concerning specific effects of ions on the swelling, osmotic pressure, or viscosity of gelatin when the concentration of electrolytes in the solution exceeds M/16, since at that concentration the values of these properties are near the minimum characteristic of the isoelectric point.  相似文献   

14.
15.
16.
网翅蝗科九种蝗虫的酯酶同工酶研究(直翅目:蝗总科)   总被引:18,自引:0,他引:18  
应用聚丙烯酰胺凝胶电泳技术,对网翅蝗科Arcypteridae3属9种蝗虫进行了酯酶同工酶的研究,研究结果表明,同一属分类单元中各个种间的酯酶同工酶谱带相似程度明显高于不同属分类单元种间相似程度,较高分类单元之间酯酶谱带椒似程度低于较低分类单元之间的相似程度。  相似文献   

17.
1. The action of a number of acids on four properties of gelatin (membrane potentials, osmotic pressure, swelling, and viscosity) was studied. The acids used can be divided into three groups; first, monobasic acids (HCl, HBr, HI, HNO3, acetic, propionic, and lactic acids); second, strong dibasic acids (H2SO4 and sulfosalicylic acid) which dissociate as dibasic acids in the range of pH between 4.7 and 2.5; and third, weak dibasic and tribasic acids (succinic, tartaric, citric) which dissociate as monobasic acids at pH 3.0 or below and dissociate increasingly as dibasic acids, according to their strength, with pH increasing above 3.0. 2. If the influence of these acids on the four above mentioned properties of gelatin is plotted as ordinates over the pH of the gelatin solution or gelatin gel as abscissæ, it is found that all the acids have the same effect where the anion is monovalent; this is true for the seven monobasic acids at all pH and for the weak dibasic and tribasic acids at pH below 3.0. The two strong dibasic acids (the anion of which is divalent in the whole range of pH of these experiments) have a much smaller effect than the acids with monovalent anion. The weak dibasic and tribasic acids act, at pH above 3.0, like acids the anion of which is chiefly monovalent but which contain also divalent anions increasing with pH and with the strength of the acid. 3. These experiments prove that only the valency but not the other properties of the anion of an acid influences the four properties of gelatin mentioned, thus absolutely contradicting the Hofmeister anion series in this case which were due to the failure of the earlier experimenters to measure properly the pH of their protein solutions or gels and to compare the effects of acids at the same pH of the protein solution or protein gel after equilibrium was established. 4. It is shown that the validity of the valency rule and the non-validity of the Hofmeister anion series for the four properties of proteins mentioned are consequences of the fact that the influence of acids on the membrane potentials, osmotic pressure, swelling, and viscosity of gelatin is due to the Donnan equilibrium between protein solutions or gels and the surrounding aqueous solution. This equilibrium depends only on the valency but not on any other property of the anion of an acid. 5. That the valency rule is determined by the Donnan equilibrium is strikingly illustrated by the ratio of the membrane potentials for divalent and monovalent anions of acids. Loeb has shown that the Donnan equilibrium demands that this ratio should be 0.66 and the actual measurements agree with this postulate of the theory within the limits of accuracy of the measurements. 6. The valency rule can be expected to hold for only such properties of proteins as depend upon the Donnan equilibrium. Properties of proteins not depending on the Donnan equilibrium may be affected not only by the valency but also by the chemical nature of the anion of an acid.  相似文献   

18.
19.
Changes were studied in the standard solubility curve of fresh serum proteins by alterations in pH, temperature, concentration of protein, and nature of the salt used for precipitation. The principal factor affecting the precipitation of protein fractions was a change in temperature. In order to investigate the proteins in their original states low temperatures are necessary. Protein fraction A is altered by a change in pH and with the use of (NH4)2SO4 as a precipitant, fraction B by a change in pH and temperature, and use of (NH4)2SO4, C by a change in temperature and concentration of the protein, and D by a change in temperature and pH. The solubility of D is independent of the amount of protein in solution in high concentrations of salt.  相似文献   

20.
Electrophoretic separation of the protein extracts of the whole accessory reproductive gland (ARG) reveals a progressive increase in number of fractions from day 0 to day 12 of adult life. The number of fractions secreted by the different types of tubules, viz., white tubules, hyaline tubules and seminal vesicles, varies. The protein concentration of the ARG of 12-day-old insects is four times higher than that of newly emerged adult insects. Three protein fractions of the ARG extract are immunologically precipitatale by antiserum to whole accessory gland complex. Immunoelectrophoresis of the oocyte extract from mated females and total protein extract of empty spermatophores revealed that one fraction of the oocyte protein and two of the spermatophores have their immunological counterparts in the whole ARG extract.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号