首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electric organs in Sternarchidae are of neural origin, in contrast to electric organs in other fish, which are derived from muscle. The electric organ in Sternarchus is composed of modified axons of spinal neurons. Fibers comprising the electric organ were studied by dissection and by light- and electron microscopy of sectioned material. The spinal electrocytes descend to the electric organ where they run anteriorly for several segments, turn sharply, and run posteriorly to end blindly at approximately the level where they enter the organ. At the level of entry into the organ, and where they turn around, the axons are about 20 µ in diameter; the nodes of Ranvier have a typical appearance with a gap of approximately 1 µ in the myelin. Anteriorly and posteriorly running parts of the fibers dilate to a diameter of approximately 100 µ, and then taper again. In proximal and central regions of anteriorly and posteriorly running parts, nodal gaps measure approximately 1 µ along the axon. In distal regions of anteriorly and posteriorly running parts are three to five large nodes with gaps measuring more than 50 µ along the fiber axis. Nodes with narrow and with wide gaps are distinguishable ultrastructurally; the first type has a typical structure, whereas the second type represents a new nodal morphology. At the typical nodes a dense cytoplasmic material is associated with the axon membrane. At large nodes, the unmyelinated axon membrane is elaborated to form a closely packed layer of irregular polypoid processes without a dense cytoplasmic undercoating. Electrophysiological data indicate that typical nodes in proximal regions of anteriorly and posteriorly running segments actively generate spikes, whereas large distal nodes are inactive and act as a series capacity. Increased membrane surface area provides a morphological correlate for this capacity. This electric organ comprises a unique neural system in which axons have evolved so as to generate external signals, an adaptation involving a functionally significant structural differentiation of nodes of Ranvier along single nerve fibers.  相似文献   

2.
—The regional distributions of serine hydroxymethyltransferase (SHMT) and glycine transaminase (GT) have been determined in five areas of the CNS of the rat. The SHMT activity per mg protein varied in these areas in the following order: medulia-pons and spinal cord > cerebellum > midbrain > telencephalon. The GT activity per mg protein was essentially the same in the four brain areas, whereas, in the spinal cord it was lower. The activity of GT did not correlate with the glycine content (r=?0.45. P > 0.05). However, SHMT activity per mg protein was correlated with the glycine content in four regions (the telencephalon, midbrain, medulla-pons and spinal cord; r= 0.997, P < 0.05). When the activity of SHMT was expressed per relative number of mitochondria, the enzyme levels were correlated with the glycine content in all five areas (r= 0.952, P < 0.05). The distribution of SHMT was determined in the primary subcellular fractions of the CNS. The SHMT activity in these areas of the CNS appeared to be located predominately in paniculate structures, while only 1 to 4 per cent was found in the soluble fraction. The crude nuclear (P1) and the crude mitochondrial (P2) fractions contained 90–97 per cent of the activity. Subfractionation of P2 pellets obtained from the telencephalon, medulla-pons and spinal cord indicated the SHMT activity was localized in both ‘free’ and occluded mitochondria.  相似文献   

3.
BackgroundDespite the agreed principle that access to food is a human right, undernourishment and metal ion deficiencies are public health problems worldwide, exacerbated in impoverished or war-affected areas. It is known that maternal malnutrition causes growth retardation and affects behavioral and cognitive development of the newborn. Here we ask whether severe caloric restriction leads per se to disrupted metal accumulation in different organs of the Wistar rat.MethodsInductively coupled plasma optical emission spectroscopy was used to determine the concentration of multiple elements in the small and large intestine, heart, lung, liver, kidney, pancreas, spleen, brain, spinal cord, and three skeletal muscles from control and calorically restricted Wistar rats. The caloric restriction protocol was initiated from the mothers prior to mating and continued throughout gestation, lactation, and post-weaning up to sixty days of age.ResultsBoth sexes were analyzed but dimorphism was rare. The pancreas was the most affected organ presenting a higher concentration of all the elements analyzed. Copper concentration decreased in the kidney and increased in the liver. Each skeletal muscle responded to the treatment differentially: Extensor Digitorum Longus accumulated calcium and manganese, gastrocnemius decreased copper and manganese, whereas soleus decreased iron concentrations. Differences were also observed in the concentration of elements between organs independently of treatment: The soleus muscle presents a higher concentration of Zn compared to the other muscles and the rest of the organs. Notably, the spinal cord showed large accumulations of calcium and half the concentration of zinc compared to brain. X-ray fluorescence imaging suggests that the extra calcium is attributable to the presence of ossifications whereas the latter finding is attributable to the low abundance of zinc synapses in the spinal cord.ConclusionSevere caloric restriction did not lead to systemic metal deficiencies but caused instead specific metal responses in few organs.  相似文献   

4.
Strength-duration curves of the ascending and descending conductive spinal cord potentials (SCEPs) in cats were obtained using constant current stimuli. For the formulation of numeric indices of excitability, the rheobase is defined as the minimal current strength below which response cannot occur even if the current continues, and the chronaxie is defined as the minimal duration of a current required to evoke the potential at twice the rheobase strength. The chronaxies and rheobases were calculated from the constructed strength-duration curves. The purpose of this study is to produce strength-duration curves and to evaluate the utility of chronaxies and rheobases for SCEPs. This study showed the following results: (1) there was a hyperbolic relationship between stimulus strength and stimulus duration at threshold values, similar to that seen in peripheral nerves; (2) the ascending and descending tracts of SCEP were mediated through the same pathway (based on the similar chronaxies and rheobases); (3) following spinal cord compression the chronaxie and rheobase increased significantly (P < 0.05), which is similar to peripheral nerve disturbance. However, the rheobase decreased significantly following slight spinal cord compression (P < 0.05) and systemic cooling (P < 0.01), and the strength-duration curve shifted showing a tendency towards decrease of the galvanic threshold therefore, amplitude augmentation with slight compression and with decrease in temperature seems to contribute to the reduction of the threshold. The strength-duration curve, the chronaxie and the rheobase may be useful in assessing spinal cord function.  相似文献   

5.
1. By combining the theories of Smoluchowski, Debye and Hückel, and Henry it is possible to state explicitly (making necessary assumptions) under what conditions the following simple rule should be valid for proteins: In solutions of the same ionic strength, the electric mobilities of the same protein at different hydrogen ion activities should be proportional to the number of hydrogen (hydroxyl) ions bound. 2. Data of Tiselius and of the writer confirm this rule for (a) egg albumin, (b) serum albumin, (c) deaminized gelatin and gelatin, and (d) casein. 3. On the basis of the confirmed theory the titration curves of certain proteins are predicted from their mobilities. 4. It is shown that when certain proteins are adsorbed by quartz the apparent dissociation constant of the adsorbed protein is practically unchanged. The mass law must also be valid at the phase boundary. 5. The facts of paragraphs (1) to (4) are discussed in connection with the mechanism of (a) protein adsorption, (b) enzyme activity, (c) immune reactions, (d) the calculation of the electric charge of cells, and (e) criteria of surface similarity.  相似文献   

6.
Subcellular fractions of the electric tissue of the main organ of the eel Electrophorus electricus were prepared in sucrose media by differential centrifugation and differential discontinuous gradient centrifugation. The distributions of acetylcholinesterase, cytochrome oxidase, DNA, and protein were determined. The appearance of the fractions was determined by phase contrast microscopy and by electron microscopy. A fraction prepared by differectial centrifugation at 30,000 g for 20 minutes in 0.89 M sucrose contained 63 per cent of the total acetylcholinesterase activity at 4 times the specific activity of that of the tissue homogenate. A subfraction prepared by centrifugation in a discontinuous density gradient showed a peak of total and relative specific acetylcholinesterase activity of 35 per cent and 1.9, respectively. The average over-all purification was 7 times. The acetylcholinesterase peak was below the cytochrome oxidase peak and above the DNA peak in the density gradient. The presence of acetylcholinesterase in the fractions was correlated with the presence of large fragments of the cell membrane; however, the presence of other tissue components was noted. The acetylcholinesterase associated with membrane was found to be activated by incubation with sodium deoxycholate. The possible use of the peak fraction containing membranes rich in acetylcholinesterase for the investigation of other components of the acetylcholine system and of other properties of the membrane is discussed.  相似文献   

7.
Migration of cercariae of the diplostomatid trematode, Ornithodiplostomum ptychocheilus, to the brain of the fathead minnow, Pimephales promelas, takes place via directed, nonrandom movement. Penetration of the fish epidermis is rapid and is essentially complete by 2 hr postinfection. Migration to the central nervous system occurs almost exclusively via the general body musculature and connective tissue, although a few cercariae gain direct access to the nervous system via the eyes. Cercariae enter either the neural canal and spinal cord, or the brain via the spinal or cranial nerves and their associated foramina, although cercariae appear to remain in (on) these peripheral nerves for only a short time. Cercariae associated with cranial nerves continue to the brain. Those becoming associated with spinal nerves travel up the neural canal and (or) spinal cord to the brain. Data suggest that most arrive at the brain via the neural canal and spinal cord. Within the brain, most developing metacercariae (neascus-type) occur in the optic lobes and cerebellum. Whether this is “selective localization” or merely the result of the larger space afforded by these brain regions could not be determined.  相似文献   

8.
—Putrescine, spermidine, spermine, RNA, DNA and protein concentrations were determined in 14 parts of the rat nervous system. If the concentrations are expressed in DNA units, putrescine and spermidine concentrations change concomitantly in the different brain parts, with the exception of hypothalamus, where relatively higher putrescine than spermidine concentrations are observed. The constancy of putrescine/spermidine ratios indicates the value of putrescine concentration as an index of spermidine biosynthesis. Spermidine correlates with RNA, except in medulla, spinal cord and peripheral nerves. It is assumed that the relative excess of spermidine in these structures indicates an additional functional role. Spermine/DNA ratios are remarkably constant in the diencephalic and telencephalic regions; they are also nearly constant, but significantly lower in midbrain, medulla, spinal cord and cerebellum. This observation gives additional support for the preferential interrelation of spermidine with RNA and spermine with DNA; i.e. for different functional roles of these two narrowly related polycations.  相似文献   

9.
Pieces of thoracic body wall, including intercostal muscles, ribs, and the spinal cord were explanted from 15 to 18-day embryonic rats and maintained in organ culture for up to 6 days. During the time in culture muscle fibers continued to increase in size, and nerve sprouts extended along the center of the muscle. When muscle-spinal cord explants were cultured at 15 days gestation, the number of synaptic inputs per fiber increased with time in culture. Subsequently synapse elimination began with a time course similar to that recorded in vivo. In 15-day explants acetylcholine receptors were uniformly distributed along the fibers and focal cholinesterase (ChE) was not detected. The cholinergic receptors started to cluster at the midregion of the fibers after 1 day explantation, and ChE was detected in the fibers after 2 days in culture. The central receptor clusters were associated with ChE and their formation was dependent on the presence of nerve terminals. We conclude that neuromuscular contacts develop in organ culture with a pattern and time course similar to that of synapes developing in utero.  相似文献   

10.
We examined the kinetics of electrotropic curvature in solutions of low electrolyte concentration using primary roots of maize (Zea mays L., variety Merit). When submerged in oxygenated solution across which an electric field was applied, the roots curved rapidly and strongly toward the positive electrode (anode). The strength of the electrotropic response increased and the latent period decreased with increasing field strength. At a field strength of 7.5 volts per centimeter the latent period was 6.6 minutes and curvature reached 60 degrees in about 1 hour. For electric fields greater than 10 volts per centimeter the latent period was less than 1 minute. There was no response to electric fields less than 2.8 volts per centimeter. Both electrotropism and growth were inhibited when indoleacetic acid (10 micromolar) was included in the medium. The auxin transport inhibitor pyrenoylbenzoic acid strongly inhibited electrotropism without inhibiting growth. Electrotropism was enhanced by treatments that interfere with gravitropism, e.g. decapping the roots or pretreating them with ethyleneglycol-bis-[β-ethylether]-N,N,N′,N′-tetraacetic acid. Similarly, roots of agravitropic pea (Pisum sativum, variety Ageotropum) seedlings were more responsive to electrotropic stimulation than roots of normal (variety Alaska) seedlings. The data indicate that the early steps of gravitropism and electrotropism occur by independent mechanisms. However, the motor mechanisms of the two responses may have features in common since auxin and auxin transport inhibitors reduced both gravitropism and electrotropism.  相似文献   

11.
Explants of thoracic body wall from rat embryos, including intercostal muscles, ribs, and the adjacent segments of spinal cord, were maintained in organ culture. Nerve-muscle differentiation proceeded in culture with a pattern and time course similar to that of the same synapses developing in utero. To understand further the factors that regulate acetylcholine sensitivity in developing rat myotubes, we studied the effects of electrical inactivity and denervation on the distribution of acetylcholine receptors. When muscle and spinal cord were explanted at 15 days of gestation, prior to the appearance of junctional receptor clusters, intact nerve terminals were required to initiate receptor aggregation at the site of nerve-muscle junction. Electrical activity was not necessary for induction of these primary junctional clusters. Inactivity resulted, however, in the appearance of secondary multiple receptor clusters at random sites along the fibers. In the presence of tetrodotoxin, the electrically inactive nerve terminals sprouted; this was accompanied by the enlargement of the junctional receptor clusters, at the end plate, but there was no correlation between nerve sprouting and the location of extrajunctional receptor aggregates. Later in development, at a time when the junctional receptors are metabolically more stable, terminal sprouting failed to induce the increase in size of junctional receptor aggregates.  相似文献   

12.
1. To vicariously investigate the nitric oxide synthase (NOS) production after spinal cord injury, NADPH-d histochemistry was performed on the selected peripheral nerves of adult rabbits 7 days after ischemia. The effect of transient spinal cord ischemia (15 min) on possible degenerative changes in the motor and mixed peripheral nerves of Chinchilla rabbits was evaluated.2. The NADPH-diaphorase histochemistry was used to determine NADPH-diaphorase activity after ischemia/reperfusion injury in radial nerve and mediane nerve isolated from the fore-limb and femoral nerve, saphenous nerve and sciatic nerve separated from the hind-limb of rabbits. The qualitative analysis of the optical density of NADPH-diaphorase in selected peripheral nerves demonstrated different frequency of staining intensity (attained by UTHSCSA Image Tool 2 analysis for each determined nerve).3. On the seventh postsurgery day, the ischemic spinal cord injury resulted in an extensive increase of NADPH-d positivity in isolated nerves. The transient ischemia caused neurological disorders related to the neurological injury—a partial paraplegia. The sciatic, femoral, and saphenous nerves of paraplegic animals presented the noticeable increase of NADPH-d activity. The mean of NADPH-diaphorase intensity staining per unit area ranged from 134.87 (±32.81) pixels to 141.65 (±35.06) pixels (using a 256-unit gray scale where 0 denotes black, 256 denotes white) depending on the determined nerve as the consequence of spinal cord ischemia. The obtained data were compared to the mean values of staining intensity in the same nerves in the limbs of control animals (163.69 (±25.66) pixels/unit area in the femoral nerve, 173.00 (±32.93) pixels/unit area in saphenous nerve, 186.01 (±29.65) pixels/unit area in sciatic nerve). Based on the statistical analysis of the data (two-way unpaired Mann–Whitney test), a significant increase (p≤0.05) of NADPH-d activity in femoral and saphenous nerve, and also in sciatic nerve (p≤0.001) has been found. On the other hand, there was no significant difference between the histochemically stained nerves of fore-limbs after ischemia/reperfusion injury and the same histochemically stained nerves of fore-limbs in control animals.4. The neurodegenerative changes of the hind-limbs, characterized by damage of their motor function exhibiting a partial paraplegia after 15 min spinal cord ischemia and subsequent 7 days of reperfusions resulted in the different sensitivity of peripheral nerves to transient ischemia. Finally, we suppose that activation of NOS indirectly demonstrable through the NADPH-d study may contribute to the explanation of neurodegenerative processes and the production of nitric oxide could be involved in the pathophysiology of spinal cord injury by transient ischemia.  相似文献   

13.
Summary The duration of the electric organ discharge (EOD) in Gymnotus carapo is brief and independent of fish size. Spinal mechanisms involved in electrocyte synchronization were explored by recording spontaneous action potentials of single fibers from the electromotor bulbospinal tract (EBST). Using the field potential of the medullary electromotor nucleus (MEN) as a temporal reference we calculated the orthodromic conduction velocity (CV) of these fibers (range: 10.7–91 m/s).The CVs (in m/s) of fibers recorded at the same level of the spinal cord were significantly different in small and large fish; this difference disappeared when CV were expressed as percentage of body length/ms. Plotting these values against conduction distance (also in %) showed that low CV fibers predominate in the rostral cord while only fast fibers are found at distal levels. Moreover, antidromic stimulation of the distal cord was only effective on high CV fibers. The orthodromic CVs in the distal portion of the recorded fibers were calculated by collision experiments; no significant differences were found between proximal and distal portions.The spatial distribution of CV values within the EBST is proposed to play the main role in synchronizing the electromotoneurons' activity along the spinal cord.Abbreviations EOD electric organ discharge - EO electric organ - EBST electromotor bulbospinal tract - MEN medullary electromotor nucleus - CV conduction velocity - EMN electromotoneuron  相似文献   

14.
A simple method was developed for the determination of resistance coefficients for ethylene diffusion in plant tissues based on the kinetic analysis of the efflux of preloaded ethane gas. Efflux curves were analyzed to obtain first-order rate constants and resistance coefficients. Resistance coefficients determined by the ethane efflux and steady-state methods were found to agree well. Employing the ethane efflux method, it was shown that over 97% of gas exchange of tomato (Lycopersicum esculentum Mill., cv. `Ace') fruits occurs through the stem scar. The resistances to diffusion of tomato skin and stem scar were found to be 280,000 and 300 seconds per centimeter, respectively; the combined resistance of intact tomato fruits was approximately 7,800 seconds per centimeter. The ethane efflux method was employed to show that plastic shrink-wrapping of English cucumbers (Cucumis sativus L. var anglicus Bailey) increased the resistance to ethane diffusion from 1.1 × 103 to 23 × 103 seconds per centimeter.  相似文献   

15.
Apparatus has been designed and constructed for the measurement of the electric impedance of suspensions of Arbacia eggs in sea water to alternating currents of frequencies from one thousand to fifteen million cycles per second. This apparatus is simple, rugged, compact, accurate, and rapid. The data lead to the conclusions that the specific resistance of the interior of the egg is about 90 ohm cm. or 3.6 times that of sea water, and that the impedance of the surface of the egg is probably similar to that of a "polarization capacity". The characteristics of this surface impedance can best be determined by measurements of the capacity and resistance of suspensions of eggs. No specific change has been found in the interior resistance or the surface impedance which can be related either to membrane formation or to cell division.  相似文献   

16.
Structure of central projections of the motoneuron axons of the spinal cord of the lamprey Lampetra fluviatilis was studied using labeling with horseradish peroxidase in vitro. Axons of the lamprey spinal cord motoneurons were found to have collaterals terminating in ventral columns of the white matter, in which they establish contacts with dendrites of adjacent motoneurons, which can be considered as a substrate of the intermotoneuron interaction. Some axons of motoneurons give bifurcations to two equal branches connected with two neighboring ventral roots, which seems to facilitate propagation of rhythmic activity of locomotor generator in the rostro caudal direction for providing continuous wave of contraction of myotome muscles in the course of undulating movement.  相似文献   

17.
Abstract— —The synthesis of acetylcholine and its compartmentation were studied in the electric organ of Torpedo marmorata. When electric organ was homogenized in iso-osmotic NaCl-sucrose some 55 per cent of its acetylcholine content was lost unless very potent cholinesterase inhibitors were present. Slices of electric organ incubated in a suitable medium were found to synthesize radioactive-labelled acetylcholine from [ N-Me-3 H] choline. The specific activity of the labelled acetylcholine was higher in the trichloracetic acid extract of the organ slices than in an NaCl-sucrose homogenate. Acetylcholine-containing vesicles isolated from the NaCl-sucrose homogenate contained labelled acetylcholine with about the same specific activity as the parent homogenate. There was thus a fraction of acetylcholine in the incubated tissue of higher specific radioactivity that was lost when the tissue was homogenized. The acetylcholine-containing vesicles lose their acetylcholine when submitted to gel filtration under hypo-osmotic conditions. On standing at 5°C there were only small losses of acetylcholine from the vesicles but at 20°C the losses were substantial. Vesicles containing labelled acetylcholine were studied. On gel filtration under iso-osmotic conditions there was a considerable loss of labelled acetylcholine without a concomitant loss of bio-assayable acetylcholine. The pools of radioactive and bio-assayable acetylcholine are therefore not homogeneous in the vesicles as isolated.  相似文献   

18.
19.
The kinetic constants for 4-aminobutyrate: 2-oxoglutarate aminotransferase (GABA-trans-aminase) and succinate-semialdehyde: NAD+ oxidoreductase (SSA-DH) have been determined using rat brain homogenate. The Michaelis constants for GABA-T at saturated substrate concentrations were calculated to be Kgaba= 1.5 mM, K2-OG= 0.25 mM, KGLU= 620 μM, and KSSA= 87 μm. The Vmax for the reaction using GABA and 2-oxoglutarate (2-OG) as substrates (forward reaction) was found to be 35.2 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/gh and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. The kinetics of GABA-T have been shown to be consistent with a Ping Pong Bi Bi mechanism. Substrate inhibition of the forward reaction, through formation of a dead-end complex, was found to occur with 2-OG (Ki 3.3 mM), whereas GABA was found to be a product inhibitor of the reverse reaction (Ki= 0.6 mM). Using the appropriate Haldane relationship, a Keq of 0.04 for GGBA-T was found, indicating that the reaction was strongly biased towards GABA. For SSA-DH, the Km of SSA was determined (9.1 μM) and the Vmax was 27.5 μmol/ These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g These results indicate that MOPEG is a measure for changes in central noradrenaline turnover and that drugs affect MOPEG in the brain and spinal cord similarly. Fractional rate constants of MOPEG in the rat brain and spinal cord were estimated with the exponential decline curves produced by treatment with pargyline. Turnover rates of 193 pmol/g/h and 167 pmol/g/h in the brain and spinal cord respectively were calculated. h. The effect of di-n-propylacetate (DPA) on both GABA-T and SSA-DH was measured. DPA inhibited SSA-DH competitively with respect to SSA, giving a Ki of 0.5 mM. GABA-T was only slightly inhibited. The Ki of DPA for the forward reaction was 23.2 mM with respect to GABA, which was 40-50 times higher than that for SSA-DH. For the reverse reaction the Ki of DPA was found to be nearly the same (15.2 mM with respect to Glu and 22.9 mM with respect to SSA). These results suggest that GABA accumulation in the brain, after administration of DPA in vivo, is caused by SSA-DH inhibition. Two mechanisms are indicated by the data. (1) The higher level of SSA, which results from inhibition of SSA-DH, initiates the reverse reaction of GABA-T, thus increasing the level of GABA via conversion of SSA. (2) The degradation of GABA is inhibited by SSA, since SSA has a strong inhibitory effect on the forward reaction, as calculated from the present data.  相似文献   

20.
Rostro-caudal ramification of terrapin hindlimb afferent nerves have been studied by cord dorsum potential analyses. Stimulation of muscle and cutaneous nerves evoke different waveforms, related to the difference in fibre diameter spectra. Afferents of small muscles enter the cord through one spinal nerve, while afferents of large muscles are connected to the cord by up to four spinal roots. In their entrance segment muscle afferents bifurcate into branches extending in rostral and caudal direction over at least three segments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号