首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The P.D. across the protoplasm of Valonia macrophysa has been studied while the cells were exposed to artificial solutions resembling sea water in which the concentration of KCl was varied from 0 to 0.500 mol per liter. The P.D. across the protoplasm is decreased by lowering and increased by raising the concentration of KCl in the external solution. Changes in P.D. with time when the cell is treated with KCl-rich sea water resemble those observed with cells exposed to Valonia sap. Varying the reaction of natural sea water from pH 5 to pH 10 has no appreciable effect on the P.D. across Valonia protoplasm. Similarly, varying the pH of KCl-rich sea water within these limits does not alter the height of the first maximum in the P.D.-time curve. The subsequent behavior of the P.D., however, is considerably affected by the pH of the KCl-rich sea water. These changes in the shape of the P.D.-time curve have been interpreted as indicating that potassium enters Valonia protoplasm more rapidly from alkaline than from acidified KCl-rich sea water. This conclusion is discussed in relation to certain theories which have been proposed to explain the accumulation of KCl in Valonia sap. The initial rise in P.D. when a Valonia cell is transferred from natural sea water to KCl-rich sea water has been correlated with the concentrations of KCl in the sea waters. It is assumed that the observed P.D. change represents a diffusion potential in the external surface layer of the protoplasm, where the relative mobilities of ions may be supposed to differ greatly from their values in water. Starting with either Planck''s or Henderson''s formula, an equation has been derived which expresses satisfactorily the observed relationship between P.D. change and concentration of KCl. The constants of this equation are interpreted as the relative mobilities of K+, Na+, and Cl- in the outer surface layer of the protoplasm. The apparent relative mobility of K+ has been calculated by inserting in this equation the values for the relative mobilities of Na+ (0.20) and Cl- (1.00) determined from earlier measurements of concentration effect with natural sea water. The average value for the relative mobility of K+ is found to be about 20. The relative mobility may vary considerably among different individual cells, and sometimes also in the same individual under different conditions. Calculation of the observed P.D. changes as phase-boundary potentials proved unsatisfactory.  相似文献   

2.
Electrical resistance and polarization were measured during the passage of direct current across a single layer of protoplasm in the cells of Valonia ventricosa impaled upon capillaries. These were correlated with five stages of the P.D. existing naturally across the protoplasm, as follows: 1. A stage of shock after impalement, when the P.D. drops from 5 mv. to zero and then slowly recovers. There is very little effective resistance in the protoplasm, and polarization is slight. 2. The stage of recovery and normal P.D., with values from 8 to 25 mv. (inside positive). The average is 15 mv. At first there is little or no polarization when small potentials are applied in either direction across the protoplasm, nor when very large currents pass outward (from sap to sea water). But when the positive current passes inward there is a sudden response at a critical applied potential ranging from 0.5 to 2.0 volts. The resistance then apparently rises as much as 10,000 ohms in some cases, and the rise occurs more quickly in succeeding applications after the first. When the potential is removed there is a back E.M.F. displayed. Later there is also an effect of such inward currents which persists into the first succeeding outward flow, causing a brief polarization at the first application of the reverse potential. Still later this polarization occurs at every exposure, and at increasingly lower values of applied potentials. Finally there is a "constant" state reached in which the polarization occurs with currents of either direction, and the apparent resistance is nearly uniform over a considerable range of applied potential. 3. A state of increased P.D.; to 100 mv. (inside positive) in artificial sap; and to 35 or 40 mv. in dilute sea water or 0.6 M MgSO4. The polarization response and apparent resistance are at first about as in sea water, but later decrease. 4. A reversed P.D., to 50 mv. (outside positive) produced by a variety of causes, especially by dilute sea water, and also by large flows of current in either direction. This stage is temporary and the cells promptly recover from it. While it persists the polarization appears to be much greater to outward currents than to inward. This can largely be ascribed to the reduction of the reversed P.D. 5. Disappearance of P.D. caused by death, and various toxic agents. The resistance and polarization of the protoplasm are negligible. The back E.M.F. of polarization is shown to account largely for the apparent resistance of the protoplasm. Its calculation from the observed resistance rises gives values up to 150 mv. in the early stages of recovery, and later values of 50 to 75 mv. in the "constant" state. These are compared with the back E.M.F. similarly calculated from the apparent resistance of intact cells. The electrical capacitance of the protoplasm is shown by the time curves to be of the order of 1 microfarad per cm.2 of surface.  相似文献   

3.
Perfusion of the vacuole of living cells of Halicystis is described, the method employing two longitudinally fused capillaries as entrance and exit tubes. Natural sap, artificial sap, and sea water have been successfully perfused, with various additions and deficiencies, within the limits of physiological balance. In H. ovalis the P.D. remains positive and scarcely reduced in value when normal sea water, at pH 8.1, is perfused in the vacuole. In H. Osterhoutii the P.D. reverses in sign when the perfused solution has a higher pH than 6.5. In both cases a large P.D. persists when the solutions are the same on both sides of the protoplasm. In the absence of external gradients, there must be some internal gradient or asymmetry of the protoplasm itself to account for the P.D. Since appreciable currents are produced, there must be some metabolic activity as a source of energy. The higher normal P.D. in H. ovalis is not due to the higher KCl content of its sap (as earlier suggested by the author) since it persists nearly unchanged when sea water is substituted for sap.  相似文献   

4.
The potential difference across the protoplasm of impaled cells of two American species of Halicystis is compared. The mean value for H. Osterhoutii is 68.4 mv.; that for H. ovalis is 79.7 mv., the sea water being positive to the sap in both. The higher potential of H. ovalis is apparently due to the higher concentration of KCl (0.3 M) in its vacuolar sap. When the KCl content of H. Osterhoutii sap (normally 0.01 M or less) is experimentally raised to 0.3 M, the potential rises to values about equal to those in H. ovalis. The external application of solutions high in potassium temporarily lowers the potential of both, probably by the high mobility of K+ ions. But a large potential is soon regained, representing the characteristic potential of the protoplasm. This is about 20 mv. lower than in sea water. The accumulation of KCl in the sap of H. ovalis is apparently not due to the higher mobility of K+ ion in its protoplasm, since the electrical effects of potassium are practically identical in H. Osterhoutii, where KCl is not accumulated.  相似文献   

5.
The potential difference across the protoplasm of impaled cells of Halicystis is not affected by increase of oxygen tension in equilibrium with the sea water, nor with decrease down to about 1/10 its tension in the air (2 per cent O2 in N2). When bubbling of 2 per cent O2 is stopped, the P.D. drifts downward, to be restored on stirring the sea water, or rebubbling the gas. Bubbling 0.2 per cent O2 causes the P.D. to drop to 20 mv. or less; 1.1 per cent O2 to about 50 mv. Restoration of 2 per cent or higher O2 causes recovery to 70 or 80 mv. often with a preliminary cusp which decreases the P.D. before it rises. Perfusion of aerated sea water through the vacuole is just as effective in restoring the P.D. as external aeration, indicating that the direction of the oxygen gradient is not significant. Low O2 tension also inhibits the reversed, negative P.D. produced by adding NH4Cl to sea water, 0.2 per cent O2 bringing this P.D. back to the same low positive values found without ammonia. Restoration of 2 per cent O2 or air, restores this latent negativity. At slightly below the threshold for ammonia reversal, low O2 may induce a temporary negativity when first bubbled, and a negative cusp may occur on aeration before positive P.D. is regained. This may be due to a decreased consumption of ammonia, or to intermediate pH changes. The locus of the P.D. alteration was tested by applying increased KCl concentrations to the cell exterior; the large cusps produced in aerated solutions become greatly decreased when the P.D. has fallen in 0.2 per cent O2. This indicates that the originally high relative mobility or concentration of K+ ion has approached that of Na+ in the external protoplasmic surface under reduced O2 tension. Results obtained with sulfate sea water indicate that Na+ mobility approaches that of SO4 in 0.2 per cent O2. P.D. measurements alone cannot tell whether this is due to an increase of the slower ion or a decrease of the faster ion. A decrease of all ionic permeability is indicated, however, by a greatly increased effective resistance to direct current during low O2. Low resistance is regained on aeration. The resistance increase resembles that produced by weak acids, cresol, etc. Acids or other substances produced in anaerobiosis may be responsible for the alteration. Or a deficiency of some surface constituent may develop. In addition to the surface changes there may be alterations in gradients of inorganic or organic ions within the protoplasm, but there is at present no evidence on this point. The surface changes are probably sufficient to account for the phenomena.  相似文献   

6.
The normal P.D. across the protoplasm of Valonia macrophysa is about 10 mv. negative (inwardly directed). On adding 0.01 M guaiacol to the sea water the P.D. becomes positive and then slowly returns approximately to the normal value. In many cases this behavior is not much affected by raising the pH and so increasing the concentration of the guaiacol ion but in other cases such an increase makes the P.D. somewhat more negative. But if we wait until the exposure to guaiacol has lasted 5 minutes (and the P.D. has returned to its normal value) before we raise the pH, the result is very different. The cell then behaves as though it had been sensitized to the action of the guaiacol ion which appears to be far more effective than undissociated guaiacol in making the P.D. more positive. This may be due in part to the high apparent mobility of the guaiacol ion and in part to alterations which it produces in the protoplasm (such alterations increase the P.D. across the protoplasm whereas ordinary injury would be expected to lower it and the cells live on after this treatment and show no signs of injury). This action of the guaiacol ion is in marked contrast to the behavior of other anions whose effect resembles that of Cl-.  相似文献   

7.
Lowering the pH of sea water from 8.2 to 6.4 lowers the positive P.D. of Halicystis reversibly (this does not happen with Valonia). Exposure to sea water at pH 6.4 does not affect the apparent mobility of Na+ or of K+ (this agrees with Valonia). Guaiacol makes the P.D. of Halicystis less positive (in Valonia it has the opposite effect). Exposure to guaiacol does not reverse the effect of KCl in Halicystis which in this respect differs from Valonia. The P.D. can be changed from 66 mv. positive to 23 mv. negative by the combined action of KCl and guaiacol. Exposure to guaiacol affects Halicystis and Valonia similarly in respect to their behavior with dilute sea water. Normally the dilute sea water makes the P.D. more negative but after sufficient exposure to guaiacol dilute sea water either produces no change in P.D. or makes it more positive. In the latter case we may assume that the apparent mobility of Na+ has become greater than that of Cl- as the result of the action of guaiacol. (Normally the apparent mobility of Cl- is greater than that of Na+.) In Halicystis, as in Valonia and in Nitella, an organic substance can greatly change the apparent mobilities of certain inorganic ions (K+ or Na+).  相似文献   

8.
The cells of Halicystis impaled on capillaries reach a steady P.D. of 60 to 80 millivolts across the protoplasm from sap to sea water. The outer surface of the protoplasm is positive in the electrometer to the inner surface. The P.D. is reduced by contact with sap and balanced NaCl-CaCl2 mixtures; it is abolished completely in solutions of NaCl, CaCl2, KCl, MgSO4, and MgCl2. There is prompt recovery of P.D. in sea water after these exposures.  相似文献   

9.
In normal cells of Valonia the order of the apparent mobilities of the ions in the non-aqueous protoplasmic surface is K > Cl > Na. After treatment with 0.01 M guaiacol (which does not injure the cell) the order becomes Na > Cl > K. As it does not seem probable that such a reversal could occur with simple ions we may assume provisionally that in the protoplasmic surface we have to do with charged complexes of the type (KX I)+, (KX II)+, where X I and X II are elements or radicals, or with chemical compounds formed in the protoplasm. When 0.01 M guaiacol is added to sea water or to 0.6 M NaCl (both at pH 6.4, where the concentration of the guaiacol ion is negligible) the P.D. of the cell changes (after a short latent period) from about 10 mv. negative to about 28 mv. positive and then slowly returns approximately to its original value (Fig. 1, p. 14). This appears to depend chiefly on changes in the apparent mobilities of organic ions in the protoplasm. The protoplasmic surface is capable of so much change that it does not seem probable that it is a monomolecular layer. It does not behave like a collodion nor a protein film since the apparent mobility of Na+ can increase while that of K+ is decreasing under the influence of guaiacol.  相似文献   

10.
In some ways the effects of hexylresorcinol on Nitella resemble those of guaiacol but in others they differ. Both substances depress the P.D. reversibly and both decrease the potassium effect. Hexylresorcinol decreases the apparent mobility of Na+ and of K+. Guaiacol increases that of Na+ but not of K+. The action of hexylresorcinol is more striking than that of guaiacol since 0.0003 M of the former is as effective as 0.03 M of the latter in depressing the P.D. It is evident that organic substances can change the behavior of inorganic ions in a variety of ways.  相似文献   

11.
In measurements of P.D. across the protoplasm in single cells, the presence of parallel circuits along the cell wall may cause serious difficulty. This is particularly the case with marine algae, such as Valonia, where the cell wall is imbibed with a highly conducting solution (sea water), and hence has low electrical resistance. In potential measurements on such material, it is undesirable to use methods in which the surface of the cell is brought in contact with more than one solution at a time. The effect of a second solution wetting a part of the cell surface is discussed, and demonstrated by experiment. From further measurements with improved technique, we find that the value previously reported for the P.D. of the chain Valonia sap | Valonia protoplasm | Valonia sap is too low, and also that the P.D. undergoes characteristic changes during experiments lasting several hours. The maximum P.D. observed is usually between 25 and 35 mv., but occasionally higher values (up to 82 mv.) are found. The appearance of the cells several days after the experiment, and the P.D.''s which they give with sea water, indicate that no permanent injury has been received as a result of exposure to artificial sap. If such cells are used in a second measurement with artificial sap, however, the form of the P.D.-time curve indicates that the cells have undergone an alteration which persists for a long time. On the basis of the theory of protoplasmic layers, an attempt has been made to explain the observed changes in P.D. with time, assuming that these changes are due to penetration of KCl into the main body of the protoplasm.  相似文献   

12.
On page 39, Vol. viii, No. 2, September 18, 1925, multiply the right-hand side of formula (2) by the factor See PDF for Equation. On page 44, immediately after formula (1) the text should be continued as follows: Let us suppose a membrane to be separated by two solutions of KCl of different concentrations K1 and K2 and these concentrations and the corresponding concentrations of K+ within the membrane, which are in equilibrium with the outside solutions, to be so high that the H+ ions may be neglected. When a small electric current flows across the system, practically the K+ ions alone are transferred and that in a reversible manner. Therefore the total P.D. is practically See PDF for Equation This P.D. is composed of two P.D.''s at the boundaries and the diffusion potential within the membrane. Suppose the immobility of the anions is not absolute but only relative as compared with the mobility of the cations, KCl would gradually penetrate into the membrane to equal concentration with the outside solution on either side and no boundary potential would be established. In this case the diffusion P.D. within the membrane is the only P.D., amounting to See PDF for Equation but, V being practically = 0, it would result that See PDF for Equation So the definitive result is the same as in the former case. Now cancel the printed text as far as page 48, line 13 from the top of the page, but retain Fig. 1. On page 50, line 19 from the top of the page, cancel the sentence beginning with the word But and ending with the words of the chain.  相似文献   

13.
The effect of temperature upon the bioelectric potential across the protoplasm of impaled Valonia cells is described. Over the ordinary tolerated range, the P.D. is lowest around 25°C., rising both toward 15° and 35°. The time curves are characteristic also. The magnitude of the temperature effect can be controlled by changing the KCl content of the sea water (normally 0.012 M): the magnitude is greatly reduced at 0.006 M KCl, enhanced at 0.024 M, and greatly exaggerated at 0.1 M KCl. Conversely, temperature controls the magnitude of the potassium effect, which is smallest at 25°, with a cusped time course. It is increased, with a smoothly rising course, at 15°, and considerably enhanced, with only a small cusp, at 35°. A temporary "alteration" of the protoplasmic surface by the potassium is suggested to account for the time courses. This alteration does not occur at 15°; the protoplasm recovers only slowly and incompletely at 25°, but rapidly at 35°, in such fashion as to make the P.D. more negative than at 15°. This would account for the temperature effects observed in ordinary sea water.  相似文献   

14.
Evidence that the inner and outer protoplasmic surfaces in Valonia are unlike is found in the high P.D. across the protoplasm when the external solution has the same composition as the vacuolar sap. Earlier experiments with artificial sap have been repeated, using natural as well as artificial sap. Good agreement between the data with the natural and the artificial solution was found both in the magnitude of the P.D.''s observed and in the shape of the P.D.-time curves. The P.D.''s, however, were considerably higher than the values formerly reported as usual, while the cells proved much less liable to alteration produced by exposure to sap. It is suggested that the cells used in the recent experiments were in a more vigorous condition, perhaps as a result of exposure to stronger illumination. The interpretation of the shape of the P.D.-time curves, proposed in an earlier report, and based on the theory of protoplasmic layers, is further discussed. It is assumed that the fluctuations in P.D. are due to an increase in the concentration of K in the main body of the protoplasm.  相似文献   

15.
The effects of light upon the potential difference across the protoplasm of impaled Halicystis cells are described. These effects are very slight upon the normal P.D., increasing it 3 or 4 per cent, or at most 10 per cent, with a characteristic cusped time course, and a corresponding decrease on darkening. Light effects become much greater when the P.D. has been decreased by low O2 content of the sea water; light restores the P.D. in much the same time course as aeration, and doubtless acts by the photosynthetic production of O2. There are in both cases anomalous cusps which decrease the P.D. before it rises. Short light exposures may give only this anomaly. Over part of the potential range the light effects are dependent upon intensity. Increased CO2 content of the sea water likewise depresses the P.D. in the dark, and light overcomes this depression if it is not carried too far. Recovery is probably due to photosynthetic consumption of CO2, unless there is too much present. Again there are anomalous cusps during the first moments of illumination, and these may be the only effect if the P.D. is too low. The presence of ammonium salts in the sea water markedly sensitizes the cells to light. Subthreshold NH4 concentrations in the dark become effective in the light, and the P.D. reverses to a negative sign on illumination, recovering again in the dark. This is due to increase of pH outside the cell as CO2 is photosynthetically reduced, with increase of undissociated NH3 which penetrates the cell. Anomalous cusps which first carry the P.D. in the opposite direction to the later drift are very marked in the presence of ammonia, and may represent an increased acidity which precedes the alkaline drift of photosynthesis. This acid gush seems to be primarily within the protoplasm, persisting when the sea water is buffered. Glass electrode measurements also indicate anomalies in the pH drift. There are contrary cusps on darkening which suggest temporarily increased alkalinity. Even more complex time courses are given by combining low O2 and NH4 exposures with light; these may have three or more cusps, with reversal, recovery, and new reversal. The ultimate cause of the light effects is to be found in an alteration of the surface properties by the treatments, which is overcome (low O2, high CO2), or aided (NH4) by light. This alteration causes the surface to lose much of its ionic discrimination, and increases its electrical resistance. Tests with various anion substitutions indicate this, with recovery of normal response in the light. A theory of the P.D. in Halicystis is proposed, based on low mobility of the organic anions of the protoplasm, with differences in the two surfaces with respect to these, and the more mobile Na and K. ions.  相似文献   

16.
The theoretical aspects of the problem of sieve-like membranes are developed. The method of preparing the dried collodion membrane is described, and the method of defining the property of a particular membrane is given. It consists of the measurement of the Co P, that is the P.D. between an 0.1 and an 0.01 M KCl solution separated by the membrane. Co P is in the best dried membranes 50 to 53 millvolts, the theoretically possible maximum value being 55 millivolts. Diffusion experiments have been carried out with several arrangements, one of which is, for example, the diffusion of 0.1 M KNO3 against 0.1 M NaCl across the membrane. The amount of K+ diffusing after a certain period was in membranes with a sufficiently high Co P (about 50 millivolts or more) on the average ten times as much as the amount of diffused Cl-. In membranes with a lower Co P the ratio was much smaller, down almost to the proportion of 1:1 which holds for the mobility of these two ions in a free aqueous solution. When higher concentrations were used, e.g. 0.5 M solution, the difference of the rate of diffusion for K+ and Cl- was much smaller even in the best membranes, corresponding to the fact that the P.D. of two KCl solutions whose concentrations are 10:1 is much smaller in higher ranges of concentration than in lower ones. These observations are confirmed by experiments arranged in other ways. It has been shown that, in general, the diffusion of an anion is much slower than the one of a cation across the dried collodion membrane. The ratio of the two diffusion coefficients would be expected to be calculable in connection with the potential difference of such a membrane when interposed between these solutions. The next problem is to show in how far this can be confirmed quantitatively.  相似文献   

17.
When protoplasm dies it becomes completely and irreversibly permeable and this may be used as a criterion of death. On this basis we may say that when 0.2 M formaldehyde plus 0.001 M NaCl is applied to Nitella death arrives sooner at the inner protoplasmic surface than at the outer. If, however, we apply 0.17 M formaldehyde plus 0.01 M KCl death arrives sooner at the outer protoplasmic surface. The difference appears to be due largely to the conditions at the two surfaces. With 0.2 M formaldehyde plus 0.001 M NaCl the inner surface is subject to a greater electrical pressure than the outer and is in contact with a higher concentration of KCl. In the other case these conditions are more nearly equal so that the layer first reached by the reagent is the first to become permeable. The outer protoplasmic surface has the ability to distinguish electrically between K+ and Na+ (potassium effect). Under the influence of formaldehyde this ability is lost. This is chiefly due to a falling off in the partition coefficient of KCl in the outer protoplasmic surface. At about the same time the inner protoplasmic surface becomes completely permeable. But the outer protoplasmic surface retains its ability to distinguish electrically between different concentrations of the same salt, showing that it has not become completely permeable. After the potential has disappeared the turgidity (hydrostatic pressure inside the cell) persists for some time, probably because the outer protoplasmic surface has not become completely permeable.  相似文献   

18.
In their influence on the P.D. across the protoplasm of Valonia macrophysa, Kütz., Li+ and Cs+ resemble Na+, while Rb+ and NH4 + resemble K+. The apparent mobilities of the ions in the external surface layer of Valonia protoplasm increase in the order: Cs+, Na+, Li+ < Cl- < Rb+ < K+ < NH4 +.  相似文献   

19.
The action curve in Chara seems to depend (as in Nitella) on the outward movement of K+ from the sap. Presumably the increase in permeability in the inner protoplasmic surface and the outward movement of K+ destroy the concentration gradient of K+ across the inner protoplasmic surface. Hence the outwardly directed P.D. disappears, causing the rise (spike) of the action curve. The outer protoplasmic surface is normally insensitive to K+. But when it is made sensitive to K+ by treatment with guanidine the outwardly moving K+ sets up a positive P.D. on reaching the outer surface and this causes the action curve to fall, producing a peak. Then the curve has 2 peaks, the second being due to the process of recovery. The action curve thus comes to resemble that of Nitella in which the outer protoplasmic surface is normally sensitive to K+.  相似文献   

20.
The nature and origin of the large "protoplasmic" potential in Halicystis must be studied by altering conditions, not only in external solutions, but in the sap and the protoplasm itself. Such interior alteration caused by the penetration of ammonia is described. Concentrations of NH4Cl in the sea water were varied from 0.00001 M to above 0.01 M. At pH 8.1 there is little effect below 0.0005 M NH4Cl. At about 0.001 M a sudden reversal of the potential difference across the protoplasm occurs, from about 68 mv. outside positive to 30 to 40 mv. outside negative. At this threshold value the time curve is characteristically S-shaped, with a slow beginning, a rapid reversal, and then an irregularly wavering negative value. There are characteristic cusps at the first application of the NH4Cl, also immediately after the reversal. The application of higher NH4Cl concentrations causes a more rapid reversal, and also a somewhat higher negative value. Conversely the reduction of NH4Cl concentrations causes recovery of the normal positive potential, but the threshold for recovery is at a lower concentration than for the original reversal. A temporary overshooting or increase of the positive potential usually occurs on recovery. The reversals may be repeated many times on the same cell without injury. The plot of P.D. against the log of ammonium ion concentration is not the straight line characteristic of ionic concentration effects, but has a break of 100 mv. or more at the threshold value. Further evidence that the potential is not greatly influenced by ammonium ions is obtained by altering the pH of the sea water. At pH 5, no reversal occurs with 0.1 M NH4Cl, while at pH 10.3, the NH4Cl threshold is 0.0001 M or less. This indicates that the reversal is due to undissociated ammonia. The penetration of NH3 into the cells increases both the internal ammonia and the pH. The actual concentration of ammonium salt in the sap is again shown to have little effect on the P.D. The pH is therefore the governing factor. But assuming that NH3 enters the cells until it is in equilibrium between sap and sea water, no sudden break of pH should occur, pH being instead directly proportional to log NH3 for any constant (NH4) concentration. Experimentally, a linear relation is found between the pH of the sap and the log NH3 in sea water. The sudden change of P.D. must therefore be ascribed to some system in the cell upon which the pH change operates. The pH value of the sap at the NH3 threshold is between 6.0 and 6.5 which corresponds well with the pH value found to cause reversal of P.D. by direct perfusion of solutions in the vacuole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号