首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using unfertilized eggs of Arbacia punctulata as natural osmometers an attempt has been made to account for the course of swelling and shrinking of these cells in anisotonic solutions by means of the laws governing osmosis and diffusion. The method employed has been to compute permeability of the cell to water, as measured by the rate of volume change per unit of cell surface per unit of osmotic pressure outstanding between the cell and its medium. Permeability to water as here defined and as somewhat differently defined by Northrop is approximately constant during swelling and shrinking, at least for the first several minutes of these processes. Permeability is found to be independent of the osmotic pressure of the solution in which cells are swelling. Water is found to leave cells more readily than it enters, that is, permeability is greater during exosmosis than during endosmosis.  相似文献   

2.
1. The rate of exosmosis of water was studied in unfertilized Arbacia eggs, in order to bring out possible differences between the kinetics of exosmosis and endosmosis. 2. Exosmosis, like endosmosis, is found to follow the equation See PDF for Equation, in which a is the total volume of water that will leave the cell before osmotic equilibrium is attained, x is the volume that has already left the cell at time t, and k is the velocity constant. 3. The velocity constants of the two processes are equal, provided the salt concentration of the medium is the same. 4. The temperature characteristic of exosmosis, as of endomosis, is high. 5. It is concluded that the kinetics of exosmosis and endosmosis of water in these cells are identical, the only difference in the processes being in the direction of the driving force of osmotic pressure.  相似文献   

3.
1. Osmotic equilibrium and kinetics of osmosis of living cells (unfertilized eggs of Arbacia punctulata) have been studied by a diffraction method. This method consists of illuminating a suspension of cells by parallel monochromatic light and measuring, by means of telescope and scale, the angular dimensions of the resulting diffraction pattern from which the average volume of the cells may be computed. The method is far less laborious and possesses several advantages over direct measurement of individual cells. The average size of a large number of cells is obtained from a single measurement of the diffraction pattern and thus individual variability is averaged out. The observations can be made at intervals of a few seconds, permitting changes in volume to be followed satisfactorily. During the measurements the cells are in suspension and are constantly stirred. 2. Volumes of cells in equilibrium with solutions of different osmotic pressure have been determined. In agreement with our previous experiments, based upon direct microscope measurements, we have confirmed the applicability of the law of Boyle-van''t Hoff to these cells; that is to say, the product of volume and pressure has been found to be approximately constant if allowance be made for the volume of osmotically inactive material of the cell contents. The volume of osmotically inactive material was found to be, on the average, 12 per cent of the initial cell volume; in eggs from different animals this value ranged from 6 to 20 per cent. 3. Permeability to water of the Arbacia egg has been found to average, at 22°C., 0.106 cubic micra of water per square micron of cell surface, per minute, per atmosphere of difference in osmotic pressure. 4. Permeability to ethylene glycol has been found to average, at 24°C., 4.0 x 10–15 mols, per square micron of cell surface, per minute, for a concentration difference of 1 mol per liter. This is in agreement with the values reported by Stewart and Jacobs.  相似文献   

4.
We have attempted to answer the question: How nearly ideal, as an osmometer, is the unfertilized Arbacia egg? The following conclusion have been reached: 1. Volumes can be measured accurately over a wide range of pressures since the cell is in general spherical and does not suffer deformation from its own weight or other factors. 2. The product of volume and pressure is approximately constant, if allowance be made for osmotically inactive cell contents. It is computed that from 7 to 14 per cent of cell volume is occupied by osmotically inactive material. 3. Evidence is presented that no appreciable escape of cell contents occurs while the cell is in hypotonic sea water; that, therefore, the semipermeability of the membrane is approximately perfect, so long as injury to the cell is avoided. 4. In comparison with osmotic pressure the influence of other forces, such as elasticity or surface tension, on cell volume must in these experiments be slight.  相似文献   

5.
M. Tazawa  K. Kiyosawa 《Protoplasma》1973,78(4):349-364
Summary The mechanism of transcellular osmosis was analyzed on the assumption that the driving force, which is equal to the osmotic pressure of the mannitol solution given to the exosmosis side, is divided into two parts; one causing the inward water flow on the water side, the other causing the outward water flow on the solution side, when each force drives an equal amount of water. Based on this analysis a new procedure was developed to measure the endosmotic and exosmotic water permeabilities of the membranes independently. It involved measurement of volume of water transported transcellularly, change in turgor pressure, and water permeability of the cell wall alone.Experiments following the new procedure revealed that in aNitella internode positioned across a partition wall with equal length both the endosmotic and exosmotic water permeabilities remained constant during transcellular osmosis induced with 0.4M mannitol, at least for the first minute. It was found that the permeability coefficient for endosmosis (3.9 × 10–5 cm sec–1 atm–1) was very much higher than that for exosmosis (1.4× 10–5 cm sec–1 atm–1). Treatment of the endosmotic cell part with 5% ethanol conspicuously decreased the water permeability of the cell on this side down to 1/2.4 the value obtained without ethanol but never affected the permeability on the other side (exosmosis side).This work was supported partly by a Research Grant from the Ministry of Education of Japan.  相似文献   

6.
Summary The hydraulic resistance was measured on internodal cells ofNitellopsis obtusa using the method of transcellular osmosis. The hydraulic resistance was approximately 2.65 pm–1 sec Pa, which corresponds to an osmotic permeability of 101.75 m sec–1 (at 20°C).p-Chloromercuriphenyl sulfonic acid (pCMPS) (0.1–1mm, 60 min) reversibly increases the hydraulic resistance in a concentration-dependent manner.pCMPS does not have any effect on the cellular osmotic pressure.pCMPS increases the activation energy of water movement from 16.84 to 32.64 kJ mol–1, indicating that it inhibits water movement by modifying a low resistance pathway.pCMPS specifically increases the hydraulic resistance to exosmosis, but does not influence endosmosis. By contrast, nonyltriethylammonium (C9), a blocking agent of K+ channels, increases the hydraulic resistance to endosmosis, but does not affect that to exosmosis. These data support the hypothesis that water moves through membrane proteins in characean internodal cells and further that the polarity of water movement may be a consequence of the differential gating of membrane proteins on the endo- and exoosmotic ends.  相似文献   

7.
Summary This study is the first trial to measure the osmotic water permeability or the hydraulic conductivity of the plasmalemma alone of a plant cell. For this purpose tonoplast-free cells were prepared from intenodal cells ofChara australis and their hydraulic conductivities were measured by the transcellular osmosis method.The transcellular hydraulic conductivity did not change after removing the tonoplast. The transcellular hydraulic conductivity of the tonoplast-free cells was dependent on the internal osmotic pressure as is the case in the tonoplast-containing normal cells. The hydraulic conductivities for both endosmosis and exosmosis of the tonoplast-free cells were equal to respective values of the normal cells. Consequently the ratio between the inward and outward hydraulic conductivities did not change due to the loss of the tonoplast. The results indicate that the resistance of the tonoplast to water flow is negligibly small as compared with that of the plasmalemma and further that the tonoplast is not a factor responsible for the direction-dependency of hydraulic conductivity. The hydraulic conductivity of the plasmalemma is invariable for wide variations of K+ and Ca2+ in the cytoplasm.  相似文献   

8.
1. Using the unfertilized egg of the sea urchin, Arbacia, as osmometer, it was found that the rate with which water enters or leaves the cell depends on the osmotic pressure of the medium: the velocity constant of the diffusion process is higher when the cell is in concentrated sea water, and lower when the sea water medium is diluted with distilled water. Differences of more than tenfold in the value of the velocity constant were obtained in this way. When velocity constants are plotted against concentration of medium, a sigmoid curve is obtained. 2. These results are believed to indicate that cells are more permeable to water when the osmotic pressure of the medium is high than when it is low. This relation would be accounted for if water should diffuse through pores in a partially hydrated gel, constituting the cell membrane. In a medium of high osmotic pressure, the gel is conceived to give up water, to shrink, and therefore to allow widening of its pores with more ready diffusion of water through them. Conversely, in solutions of lower osmotic pressure, the gel would take up water and its pores become narrow.  相似文献   

9.
In a previous study, evidence was presented for changes in the state of water and osmotically active solutes during the cell cycle. Total water was constant at 82% (w/w), while the fraction of water that was osmotically active decreased from a maximum during S to a minimum at mitosis. Total Na+, K+, and C1? in milliequivalents per liter of cell water remained constant. Therefore, electrolytes are sequestered in the osmotically inactive water. Evidence is now presented that Na+ exists primarily as one compartment, with a second, slower compartment appearing during S and disappearing during G2. Na+ is completely exchangeable during the entire cell cycle. The distribution of other penetrating solutes was also investigated. When placed in hyperosmotic ethylene glycol solutions, cells first shrink, then swell to their original volumes. 14C-ethylene glycol distributes in 89% of cell water throughout the cell cycle. However, 14C-urea distributes in anywhere from 86–100% of the cell water, depending on the stage in the cell cycle. Both solutes are at chemical equilibrium in water in which they are distributed, but they differ in their effects on cell volume. The final volume at which cells equilibrate in urea varies with the concentration of urea in the environment and with time into the cell cycle. Results suggest a loss of osmotically active particles or decreased osmotic activity of urea.  相似文献   

10.
1. It is shown that collodion membranes which have received one treatment with a 1 per cent gelatin solution show for a long time (if not permanently) afterwards a different osmotic behavior from collodion membranes not treated with gelatin. This difference shows itself only towards solutions of those electrolytes which have a tendency to induce a negative electrification of the water particles diffusing through the membrane, namely solutions of acids, acid salts, and of salts with trivalent and tetravalent cations; while the osmotic behavior of the two types of membranes towards solutions of salts and alkalies, which induce a positive electrification of the water particles diffusing through the membrane, is the same. 2. When we separate solutions of salts with trivalent cation, e.g. LaCl3 or AlCl3, from pure water by a collodion membrane treated with gelatin, water diffuses rapidly into the solution; while no water diffuses into the solution when the collodion membrane has received no gelatin treatment. 3. When we separate solutions of acid from pure water by a membrane previously treated with gelatin, negative osmosis occurs; i.e., practically no water can diffuse into the solution, while the molecules of solution and some water diffuse out. When we separate solutions of acid from pure water by collodion membranes not treated with gelatin, positive osmosis will occur; i.e., water will diffuse rapidly into the solution and the more rapidly the higher the valency of the anion. 4. These differences occur only in that range of concentrations of electrolytes inside of which the forces determining the rate of diffusion of water through the membrane are predominantly electrical; i.e., in concentrations from 0 to about M/16. For higher concentrations of the same electrolytes, where the forces determining the rate of diffusion are molecular, the osmotic behavior of the two types of membranes is essentially the same. 5. The differences in the osmotic behavior of the two types of membranes are not due to differences in the permeability of the membranes for solutes since it is shown that acids diffuse with the same rate through both kinds of membranes. 6. It is shown that the differences in the osmotic behavior of the two types of collodion membranes towards solutions of acids and of salts with trivalent cation are due to the fact that in the presence of these electrolytes water diffuses in the form of negatively charged particles through the membranes previously treated with gelatin, and in the form of positively charged particles through collodion membranes not treated with gelatin. 7. A treatment of the collodion membranes with casein, egg albumin, blood albumin, or edestin affects the behavior of the membrane towards salts with trivalent or tetravalent cations and towards acids in the same way as does a treatment with gelatin; while a treatment of the membranes with peptone prepared from egg albumin, with alanine, or with starch has no such effect.  相似文献   

11.
1. Permeability to water in unfertilized eggs of the sea urchin, Arbacia punctulata, is found to be greater in hypotonic solutions of dextrose, saccharose and glycocoll than in sea water of the same osmotic pressure. 2. The addition to dextrose solution of small amounts of CaCl2 or MgCl2 restores the permeability approximately to the value obtained in sea water. 3. This effect of CaCl2 and MgCl2 is antagonized by the further addition of NaCl or KCl. 4. It is concluded that the NaCl and KCl tend to increase the permeability of the cell to water, CaCl2 and MgCl2 to decrease it. 5. The method here employed can be used for quantitative study of salt antagonism.  相似文献   

12.
Summary The regulation of cellular volume upon exposure to hypoosmotic stress is accomplished by specific plasma membrane permeability changes that allow the efflux of certain intracellular solutes (osmolytes). The mechanism of this membrane permeability regulation is not understood; however, previous data implicate Ca2+ as an important component in the response. The regulation of protein phosphorylation is a pervasive aspect of celllular physiology that is often Ca2+ dependent. Therefore, we tested for osmotically induced protein phosphorylation as a possible mechanism by which Ca2+ may mediate osmotically dependent osmolyte efflux. We have found a rapid increase in32Pi incorporation into two proteins in clam blood cell ghosts after exposure of the intact cells to a hypoosmotic medium. The osmotic component of the stress, not the ionic dilution, was the stimulus for the phosphorylations. The osmotically induced phosphorylation of both proteins was significantly inhibited when Ca2+ was omitted from the medium, or by the calmodulin antagonist. chlorpromazine. These results correlate temporally with cell volume recovery and osmolyte (specifically free amino acid) efflux. The two proteins that become phosphorylated in response to hypoosmotic stress may be involved in the regulation of plasma membrane permeability to organic solutes, and thus. contribute to hypoosmotic cell volume regulation.  相似文献   

13.
An attempt was made to evaluate Münch's hypothesis of osmotically generated pressure flow in soybean (Glycine max L.) sieve tubes from velocity measurements and calculations of pressure potentials and sieve tube resistances. Pressure potential was estimated from values for water potentials and osmotic potential. Leaf water potential measurements were made by isopiestic thermocouple psychrometry, while the water potential of the nutrient solution was made with a vapor pressure osmometer. Osmotic potential was measured by first bringing the sucrose pools in the entire plant to the same specific radioactivity by steady-state-labeling of the shoot with constant specific radioactivity 14CO2 for 5 to 8 hours. Sucrose concentrations in sieve tubes were calculated from the disintegration rate per unit volume in sieve elements as measured by absolute quantitative microautoradiography of freeze-substituted, Eponembedded source (leaf) and sink (root) tissues.  相似文献   

14.
Osmotic responses of maize roots   总被引:16,自引:0,他引:16  
Water and solute relations of excised seminal roots of young maize (Zea mays L) plants, have been measured using the root pressure probe. Upon addition of osmotic solutes to the root medium, biphasic root pressure relaxations were obtained as theoretically expected. The relaxations yielded the hydraulic conductivity Lp r) the permeability coefficient (P sr), and the reflection coefficient (σ sr) of the root. Values of Lp r in these experiments were by nearly an order of magnitude smaller than Lp r values obtained from experiments where hydrostatic pressure gradients were used to induce water flows. The value of P sr was determined for nine different osmotica (electrolytes and nonelectrolytes) which resulted in rather variable values (0.1·10-8–1.7·10-8m·s-1). The reflection coefficient σ sr of the same solutes ranged between 0.3 and 0.6, i.e. σ sr was low even for solutes for which cell membranes exhibit a σ s≈1. Deviations from the theoretically expected biphasic responses occured which may have reflected changes of either P sr or of active pumping induced by the osmotic change. The absolute values of Lp r, P sr, and σ sr have been critically examined for an underestimation by unstirred layer effecs. The data indicate a considerable apoplasmic component for radial movement of water in the presence of hydrostatic gradients and also some solute flow byppassing root protoplasts. In the presence of osmotic gradients, however, there was a substantial cell-to-cell transport of water. Cutting experiments demonstrated that the hydraulic resistance for the longitudinal movement of water was much smaller than for radial transport except for the apical ends of the segments (length=5 to 20 mm). The differences in Lp r as well as the low σ sr values suggest that the simple osmometer model of the root with a single osmotic barrier exhibiting nearly semipermeable properties should be extended for a composite membrane model with hydraulic and osmotic barriers arranged in series and in parallel.  相似文献   

15.
Electron microscope observations are consistent with the interpretation that the elements of the endoplasmic reticulum are osmotically active in situ as well as after isolation. More recently, it has been reported that microsomal suspensions equilibrate almost completely with added C14-sucrose and that no osmotic behavior is evident from photometric data. These findings were considered at variance with the electron microscope data. However, equilibration with added label simply attests to a relatively high permeability, and, in addition, the photometric data need not be critical. Osmotic volume changes, measured photometrically, may be masked by concomitant events (e.g., changes in the refractive index of the test solutions at varying osmotic pressures, breakdown of the particles, and agglutination). For these reasons the photometric experiments were repeated. In this work, the reciprocal of optical density of microsomal suspensions was found to vary linearly with the reciprocal of concentration of the medium at constant refractive index. These changes probably correspond to osmotic volume changes, since the effect was found to be (a) independent of substance used and (b) osmotically reversible. The transmission of the suspension was found to vary with the refractive index of the medium, the concentration of particles, and the wavelength of incident light, according to relationships that are similar to or identical with those obtained for mitochondrial suspensions.  相似文献   

16.
If the plasma membrane and its associated transport proteins are solely responsible for maintenance of the asymmetric solute distribution then disruption of the plasma membrane would quickly lead to the symmetric distribution of all unattached inorganic ions between the cell and the extracellular environment. To test this hypothesis fresh pig lenses were incubated in Hanks ’ balanced salt solution in either absence or presence of non-ionic detergents (0.2 % Triton X-100 or 0.2 % Brij 58). Both detergents caused permeabilization of every lens fiber cell as shown by electron microscopy. The flux kinetics of K+, Mg2 +, Na+, Ca2 +, water and protein out of and into the permeabilized lens fiber cells was measured. Triton X-100 caused a faster flux rate of all solutes than did Brij 58. The Triton X-100 induced flux of solutes and water was associated with a decrease in lens ATP. Incubation of untreated lenses in solutions of different osmotic pressures at 0 °C demonstrated that the major fraction of lens water was osmotically unresponsive. Thus the asymmetric distribution of solutes in lens fiber cells is dependent on an intact plasma membrane and on a co-operative ATP-dependent association between K+, Mg2 +, water and cytomatrix proteins.  相似文献   

17.
1-acid glycoprotein (orosomucoid) from human blood serum was isolated in pure form and then reconstituted into large multilamellar liposomes, consisting of a binary mixture of hen-egg phosphatidylcholine and cholesterol. These liposomes were found to be osmotically sensitive. The osmotic water permeability of proteoliposomes was determined by light-scattering measurements of the osmotic volume changes after mixing with hyperosmotic solutions of potassium salts and aminoglycoside antibiotics. The initial rate of water outflow was measured as a function of glycoprotein concentration in the mixture for the preparation of proteoliposomes. This can serve as an indication for membrane permeability to the solutes used in these experiments. It was shown that aminoglycoside antibiotics passed much faster across the membrane than potassium salts, in the presence of glycoprotein in the liposomes. A recognition pattern in the osmotic behavior of these proteoliposomes was assumed.  相似文献   

18.
Peeled Avena sativa coleoptile sections (i.e. sections from which the epidermis has been removed) have been used to study the control of solute uptake under conditions where the uptake is not limited by the cuticular barrier. In the presence of 2% sucrose, auxin enhances the rate at which the total osmotic solutes increase, but this appears to be a response to the increased growth rate, inasmuch as the auxin effect is eliminated when growth is inhibited osmotically. When sections are incubated in sucrose or in 20 millimolar NaCl, the osmotic concentration increases until a plateau is reached after 8 to 24 hours. Auxin has no effect on the initial rate of increase in osmotic concentration but causes the osmotic concentration to reach a plateau earlier and at a lower osmotic conentration value. This difference in steady-state osmotic concentration is, in part, a response to auxin itself, as it persists when auxin-induced growth is inhibited osmotically. The upper limit for osmotic concentration does not appear to be determined by the turgor pressure, inasmuch as a combination of sucrose and NaCl gave a higher plateau osmotic concentration than did either solute alone. We suggest that the rate of solute uptake is determined by the availability of absorbable solutes and by the surface area exposed to the solutes. Each absorbable solute reaches a maximum internal concentration independent of other absorbable solutes; the steady-state osmotic concentration is simply the sum of these individual internal concentrations.  相似文献   

19.
1. Permeability to water in unfertilized eggs of the sea urchin, Arbacia punctulata, was studied by measuring the rate of swelling in hypotonic dextrose solution. 2. Permeability is greatly affected by addition of electrolytes in low concentration. 3. A decrease in permeability to water was found with increasing valence of the cation, using a series of cobaltammine chlorides in which the valence of the cation ranged from 1 to 6. 4. Conversely, an increase in permeability to water was found with increasing valence of the anion, using two series of potassium salts in which the valence of the anion ranged from 1 to 4, and 1 to 3, respectively. 5. It is concluded that the effect of electrolytes on permeability to water depends chiefly on the sign and the number of charges on the ion, in the sense that positive ions decrease permeability to water, while negative ions increase permeability to water; and the effectiveness of the ion is greater the higher its valence. 6. Antagonism has been demonstrated between cations and anions in their effect on permeability, and the method employed permits quantitative study of such antagonism.  相似文献   

20.
The rate of swelling of unfertilized sea urchin eggs in hypotonic sea water was investigated. Analysis of curves leads to the following conclusions. 1. The rate of swelling follows the equation, See PDF for Equation where V eq., V 0, and Vt stand for volume at equilibrium, at first instant, and at time t, respectively, the other symbols having their usual significance. This equation is found to hold over a wide range of temperatures and osmotic pressures. This relation is the one expected in a diffusion process. 2. The rate of swelling is found to have a high temperature coefficient (Q 10 = 2 to 3, or µ = 13,000 to 19,000). This deviation from the usual effect of temperature on diffusion processes is thought to be associated with changes in cell permeability to water. The possible influence of changes in viscosity is discussed. 3. The lower the osmotic pressure of the solution, the longer it takes for swelling of the cell. Thus at 15° in 80 per cent sea water, the velocity constant has a value of 0.072, in 20 per cent sea water, of 0.006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号