共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Field trials were conducted in Rheola Forest, Wales, Great Britain, to determine the effectiveness of Steinernema feltiae UK strain in controlling the web-spinning larch sawfly Cephalcia lariciphila. Foliar sprays at the rate of 5,000-20,000 nematodes/100 cm branch resulted in 3.4-29.4% infection of sawfly larvae. Soil application of 200 nematodes/cm² resulted in 61% infection of sawfly prepupae and 17.3% of pupae. Prepupal infection ranged from 4.8 to 14.7% 1 year after nematode application. Soil applications of this nematode show that it has potential for biological control of sawfly prepupae. 相似文献
3.
Harry K. Kaya Catharine M. Mannion T. M. Burlando C. E. Nelsen 《Journal of nematology》1987,19(3):287-291
The entomogenous nematode Steinernema feltiae was encapsulated in an alginate matrix containing a tomato seed. When these capsules were placed on 0.8% agar for 7 days, the seed germinated and ca. 20% of the nematodes escaped from the capsules, whereas only 0.1% escaped from capsules without seeds. When capsules containing nematodes and a seed were planted into sterilized or nonsterilized soil, nematodes escaped to infect Galleria mellonella larvae. When seed in capsules containing ca. 274 nematodes per capsule were planted in nonsterilized soil, Galleria mortality was 90% 1 week later. Galleria mortality declined to 27%, 23%, and 0% in weeks 2, 4, and 8 postplant, respectively. In sterilized soil, Galleria mortality was 96% and did not differ significantly from the nonsterilized soil in week 1, but was significantly higher in sterilized soil over nonsterilized soil for week 2 (81%) and week 4 (51%). When capsules containing nematodes only were used, Galleria mortality was 71% in sterilized soil 1 week after planting and 58%, 33%, and 12% in weeks 2, 4, and 8 postplant, respectively. In nonsterilized soil, Galleria mortality was 8%, 30%, 21%, and 28% after 1, 2, 4, and 8 weeks, respectively, using only encapsulated nematodes. When the number of nematodes per capsule was increased to ca. 817, Galleria mortality was 92 % or higher in sterilized soil from week 1 to week 4. 相似文献
4.
The insect-parasitic nematode, Steinernema feltiae Filipjev strain 42, was reared in liquid culture along with its bacterial symbiont, Xenorhabdus nematophilus Thomas &Poinar. First-stage juveniles developed into reproducing adults in a maintenance salts medium containing resuspended Xenorhabdus cells and the yeast Kluyveromyces marxianus (Hansen) van der Walt or cholesterol. Cultures with media depths greater than 4 mm required aeration. Nematode populations increased as bacterial density increased. An optimal culture system was obtained when the bacteria and nematodes developed in a semidefined medium containing tryptic soy, yeast extract, and cholesterol and were incubated on a rotary shaker at 25 ± 1 C. Under these conditions, up to 86% of the final population were infective juveniles. 相似文献
5.
The ability of Steinernema feltiae or Heterorhabditis bacteriophora infective juveniles (IJ), when applied to the soil surface, to infect a Galleria mellonella larva at the base of a soil-filled cup (276 cm³) was evaluated in the presence and absence of 100 larvae of a non-target insect, the aphid midge Aphidoletes aphidimyza, near the soil surface. In all four trials with either S. feltiae or H. bacteriophora, A. aphidimyza presence did not affect the number of IJ finding and infecting a G. mellonella larva. Steinernema feltiae and H. bacteriophora IJ movement (as measured by the percentage of IJ aggregating on either side of an experimental arena) in the presence of one or many A. aphidimyza larvae was evaluated in agar- and soil-filled petri dishes, respectively. Infective juvenile movement in the presence of A. aphidimyza did not differ from random, indicating that IJ were not attracted to A. aphidimyza. It is suggested, therefore, that A. aphidimyza does not reduce IJ efficacy when these two forms of biological control agent are present together in a field situation even though it is known that A. aphidimyza is susceptible to IJ of these species. 相似文献
6.
The entomogenous nematodes Steinerema feltiae and S. bibionis did not penetrate the roots of corn, Zea mays, to infect larval northern corn rootworm (NCR), Diabrotica barberi, feeding within. Laboratory bioassays against first instar NCR indicated that S. feltiae, Mexican strain (LD₅₀ = 49 nematodes/insect) is more virulent than S. bibionis (LD₅₀ = 100). Numbers of NCR larvae in a grain corn crop were reduced by both nematode species applied at corn seeding time at the rate of 10,000 infective-stage juveniles per linear meter of corn row. The chemical insecticide fonofos provided significantly better control than either nematode species. 相似文献
7.
Entomopathogenic nematodes (EPNs) from the Heterorhabditidae and Steinernematidae families are well-known biocontrol agents against numerous insect pests. The infective juveniles (IJs) are naturally occurring in the soil and their success in locating and penetrating the host will be affected by extrinsic/intrinsic factors that modulate their foraging behavior. Characterizing key traits in the infection dynamics of EPNs is critical for establishing differentiating species abilities to complete their life cycles and hence, their long-term persistence, in different habitats. We hypothesized that phenotypic variation in traits related to infection dynamics might occur in populations belonging to the same species. To assess these intraspecific differences, we evaluated the infection dynamics of 14 populations of Steinernema feltiae in two experiments measuring penetration and migration in sand column. Intraspecific variability was observed in the percentage larval mortality, time to kill the insect, penetration rate, and sex-ratio in both experiments (P < 0.01). Larval mortality and nematode penetration percentage were lower in migration experiments than in penetration ones in most of the cases. The sex-ratio was significantly biased toward female-development dominance (P < 0.05). When the populations were grouped by habitat of recovery (natural areas, crop edge, and agricultural groves), nematodes isolated in natural areas exhibited less larval mortality and penetration rates than those from some types of agricultural associated soils, suggesting a possible effect of the habitat on the phenotypic plasticity. This study reinforces the importance of considering intraspecific variability when general biological and ecological questions are addressed using EPNs. 相似文献
8.
A new strain of Steinernema feltiae (Rhabditida: Steinernematidae) was isolated in La Rioja (Spain) from larvae of Bibio hortulanus (Diptera: Bibionidae). A comparative morphometric analysis of this new strain and four additional S. feltiae isolates was performed. Although significant differences in morphometric measurements were observed, PCR-RFLP profiles and sequence analysis of the ITS region of rDNA confirmed the identity of the new strain as A2 RFLP type of S. feltiae. A comparative morphometric study among nematodes from three hosts, Galleria mellonella (Lepidoptera: Pyralidae), Spodoptera littoralis (Lepidoptera: Noctuidae) and B. hortulanus, was conducted. Ecological characterization of the Rioja isolate was performed in G. mellonella larvae. Larval mortality was 75.3 and 78.12% in penetration and sand column assays, respectively, and the percentage of penetrating infective juveniles was 12.0 and 2.8% in these assays. Larval mortality in the one-on-one bioassay was 4.2%, and in exposure-time bioassays, it was 50% at 11.25 hours. Relationships between morphometric characteristics and host mortality are discussed for this new strain of entomopathogenic nematode. 相似文献
9.
10.
11.
Laia Batalla-Carrera Ana Morton David Shapiro-Ilan Michael R. Strand Fernando García-del-Pino 《Journal of nematology》2014,46(3):281-286
We investigated the existing susceptibility differences of the hazelnut weevil, Curculio nucum L. (Coleoptera:, Curculionidae) to entomopathogenic nematodes by assessing the main route of entry of the nematodes, Steinernema carpocapsae strain B14 and S. feltiae strain D114, into larvae and adult insects, as well as host immune response. Our results suggested that S. carpocapsae B14 and S. feltiae D114 primarily entered adult insects and larvae through the anus. Larvae were more susceptible to S. feltiae D114 than S. carpocapsae B14 and adults were highly susceptible to S. carpocapsae B14 but displayed low susceptibility to S. feltiae D114. Penetration rate correlated with nematode virulence. We observed little evidence that hazelnut weevils mounted any cellular immune response toward S. carpocapsae B14 or S. feltiae D114. We conclude the differential susceptibility of hazelnut weevil larvae and adults to S. carpocapsae B14 and S. feltiae D114 primarily reflected differences in the ability of these two nematodes to penetrate the host. 相似文献
12.
Infective juveniles (J3) of the entomogenous nematodes Steinernema feltiae DD-136 (ca. 10,000 J3/100 ml) and S. glaseri (ca. 2,500 J3/100 ml) were incubated in steam-sterilized and nonsterilized sandy soil and bark compost for 8 weeks at 25 C. The nematodes were recovered by a two-step extraction procedure at 1-week intervals, and their infectivity to lepidopterous larvae (Spodoptera litura and Galleria mellonella) and their effect on the population and community of native nematodes in soil were determined. Survival of inoculated nematodes and mortality of insects were enhanced in sterilized media. Nonsterilized bark compost proved to be equally as suitable a medium as sterilized compost. In nonsterilized soil, the survival curve of S.feltiae declined more rapidly than that or S. glaseri which was less infective to insects despite its greater persistence even in nonsterilized soil. Soon after the addition of steinernematids to soil, the population of native nematodes showed a fluctuation with an increase in rhabditids and a decrease in other kinds of nematodes. 相似文献
13.
When infective juveniles ofSteinernema scapterisci Nguyen &Smart were released on the soil surface in the field and in the laboratory, some of them moved downward through the soil at least 10 cm in 5 days and infected and killed mole crickets. When released 2 cm below the soil surface, most of the juveniles moved into the upper 2 cm layer of soil, but some moved downward 10 cm. When placed at the center of a 16-cm soil column, infective juveniles moved in both directions with three times more moving downward than upward. Infective juveniles were more efficient in killing mole crickets in the field than in the laboratory. 相似文献
14.
H. Harold Toba James E. Lindegren John E. Turner Patrick V. Vail 《Journal of nematology》1983,15(4):597-601
In laboratory tests, larvae of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say), and the sugarbeet wireworm (SBW), Limonius californicus (Mannerheim), were exposed to the nematodes Steinernema feltiae Filipjev (Mexican strain) (= Neoaplectana carpocapsae) and S. glaseri Steiner in soil. S. feltiae caused significantly higher mortality in SBW larvae than did S. glaseri, but both nematode species were equally effective against CPB larvae. The minimum concentration of S. feltiae for 100% mortality of CPB larvae after 13 days was 157 nematodes/cm² of soil, and the LC₅₀ based on 6-day mortality was 47.5 nematodes/cm²; in contrast, 100% mortality of SBW larvae was not achieved with even the highest concentration tested, 393 nematodes/cm². CPB adults emerging from nematode-contaminated soil were not infected. In field cage tests, S. feltiae applied to the soil surface at the rates of 155 and 310 nematodes/cm² soil caused 59% and 71% mortality, respectively, of late-fourth-instar spring-generation CPB, and 28% and 29% mortality, respectively, of SBW. No infection was obtained when larvae of summer generation CPB and SBW were placed in the same cages approximately 6 weeks after nematodes were applied to the soil. Inundative soil applications of S. feltiae, though cost prohibitive at present, were effective in reducing caged CPB and SBW field populations. 相似文献
15.
The infection behavior of Steinernema carpocapsae infective juveniles (IJ) was investigated in the presence and absence of S. glaseri. Mixed inoculation of S. carpocapsae with S. glaseri IJ significantly raised the nictation rates of S. carpocapsae IJ. Significantly more S. carpocapsae IJ migrated to the host insect in the mixed inoculation with S. glaseri IJ on agar plates. More S. carpocapsae IJ penetrated into the host insect placed 2 cm below the surface in the mixed inoculation with S. glaseri IJ. More S. glaseri than S. carpocapsae IJ penetrated into hosts placed 7 cm deep. Irrespective of host location, the male ratio of S. carpocapsae IJ established in the host body was always higher in the mixed inoculation with S. glaseri IJ. 相似文献
16.
17.
A systematic program of genetic improvement was initiated by assessing the phenotypic variation of Steinernema feltiae strains for two traits assumed to limit efficacy: ultraviolet tolerance and host-finding ability. All of the strains assayed showed both low ultraviolet tolerance and poor host-finding ability, indicating that the likelihood of improving these traits through more extensive population sampling is remote. Limited genetic variation was detected among the strains for tolerance to ultraviolet, suggesting that selective breeding for increased tolerance would be inefficient. By contrast, highly significant phenotypic differences were found with regard to host-finding ability, suggesting that this trait would be responsive to selection. A genetically heterogeneous population was constructed by round-robin mating of 10 strains; it will serve as the foundation population for selective breeding. 相似文献
18.
Migration of exsheathed infective juveniles of Steinernema carpocapsae to plasma of the host insect Spodoptera litura was not affected by treatments with the lectins concanavalin A, soybean agglutinin, or wheat germ agglutinin; with the enzymes neuraminidase, α-mannosidase, lipase, pronase, or phospholipase C; or with cetyl trimethylammonium bromide or spermidine. Treatment with sodium metaperiodate or sodium hypochlorite inhibited nematode attraction towards insect plasma; numbers of randomly wandering nematodes increased. Nematode migration towards the source of attraction was unaffected by temperatures below 33 C but was impaired at 35 and 37 C. The adverse effect of 5 mM and 10 mM NaIO₄ on migratory behavior was reversed 24 hours after rinsing with buffered saline. The effect of NaOCl on nematode behavior was slightly reversible at concentrations of 0.2 and 0.4% (v/v) but apparently irreversible at 0.6 and 1.0%. The effect of heat treatment at 35 and 37 C was reversible. 相似文献
19.
Steinernema carpocapsae (Breton strain), S. glaseri, and Heterorhabditis bacteriophora were evaluated for their potential to control immature stages of the Japanese beetle, Popillia japonica, on Terceira Island (the Azores). In bioassays carried out at temperatures higher than 15 C, S. glaseri and H. bacteriophora caused 100% mortality of larvae, whereas S. carpocapsae caused 56% larval mortality. At temperatures slightly below 15 C, only S. glaseri remained effective. In field plots, in September, S. glaseri and S. carpocapsae reduced larval populations by 91% and 44%, respectively, when applied at the rate of 10⁶ nematodes/m². In April, S. glaseri caused 31% reduction in numbers of larvae, but S. carpocapsae was ineffective. In colder months (November-February) neither steinernematids nor H. bacteriophora reduced larval populations. Increasing the application rate from 10⁶ to 5 x 10⁶ infective stage S. glaseri per m² increased efficacy from 63% to 79% mortality. 相似文献