首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The change in the transverse impedance of the squid giant axon caused by direct current flow has been measured at frequencies from 1 kc. per second to 500 kc. per second. The impedance change is equivalent to an increase of membrane conductance at the cathode to a maximum value approximately the same as that obtained during activity and a decrease at the anode to a minimum not far from zero. There is no evidence of appreciable membrane capacity change in either case. It then follows that the membrane has the electrical characteristics of a rectifier. Interpreting the membrane conductance as a measure of ion permeability, this permeability is increased at the cathode and decreased at the anode.  相似文献   

2.
The elimination of heavy metals from bioleaching process waters (leachates) by electrolysis was studied in the anode and cathode region of a membrane electrolysis cell at current densities of 5–20 mA/cm2 using various electrode materials. The leaching waters containing a wide range of dissolved heavy metals, were high in sulfate, and had pH values of approx. 3. In preliminary tests using a rotating disc electrode the current density‐potential curve (CPK) was recorded at a rotation velocity of 0, 1000 and 2000 rpm and a scan rate of 10 mV/s in order to collect information on the influence of transport processes on the electrochemical processes taking place at the electrodes. The electrochemical deposition‐dissolution processes at the cathode are strongly dependent on the hydrodynamics. Detailed examination of the anodic oxidation of dissolved Mn(II) indicated that the manganese dioxide which formed adhered well to the electrode surface but in the cathodic return run it was again reduced. Electrode pairs of high‐grade steel, lead and coal as well as material combinations were used to investigate heavy metal elimination in a membrane electrolysis cell. Using high‐grade steel, lead and carbon electrode pairs, the reduction and deposition of Cu, Zn, Cr, Ni and some Cd in metallic or hydroxide form were observed in an order of 10–40 % in the cathode chamber. The dominant process in the anode chamber was the precipitation of manganese dioxide owing to the oxidation of dissolved Mn(II). Large amounts of heavy metals were co‐precipitated by adsorption onto the insoluble MnO2. High‐grade steel and to some extent lead anodes were dissolved and hence were proven unsuitable as an anode material. These findings were largely confirmed by experiments using combination electrodes of coal and platinized titanium as an anode material and steel as a cathode material. With both electrode combinations and current densities of 5 or 10 mA/cm2, in the cathode region low depositions of 10–20 % Cd, 2–10% Mn, 5–20 % Zn, 1–20 % Co and 5–15 % Ni were measured. By contrast, the elimination of other metals was substantially larger: Fe 40 –60 %, Cu 20–40 %, and Cr 40–60 %. In the anode region the removal of heavy metals was in the order of 30–50%, with Mn being as high as 80 %. The anode materials exhibit good resistance at the current densities tested. The precipitates deposited in both electrode regions contained as main components Al with 10–20 %, Mg with approximately 10 %, and SO4 with 5–20 %. The solid material in the cathode chamber consisted of relatively high proportions of Zn and Mn. Calcium in the solids indicated the co‐precipitation of calcium sulfate. The main components in the solids of the anode chamber were Mn in the form of pyrolusite, Al as basic sulfate, and Mg. The results indicate that electrochemical metal separation in the membrane electrolysis cell can represent a practical alternative to the metal separation by alkalization. Regarding the main heavy metals Zn, Mn and Ni in the process water, combination electrodes using steel as a cathode material and coal or platinized titanium as an anode material proved to be suitable for eliminating the heavy metals from the aqueous phase. However, for practical application, further work is necessary to improve the efficiency, applicability and costs of the process.  相似文献   

3.
For the first time, cathode and anode drops of powerful low-pressure amalgam lamps were measured. The lamp discharge current is 3.2 A, discharge current frequency is 43 kHz, linear electric power is 2.4 W/cm. The method of determination of a cathode drop is based on the change of a lamp operating voltage at variation of the electrode filament current at constant discharge current. The total (cathode plus anode) drop of voltage was measured by other, independent ways. The maximum cathode fall is 10.8 V; the anode fall corresponding to the maximal cathode fall is 2.4 V. It is shown that in powerful low pressure amalgam lamps the anode fall makes a considerable contribution (in certain cases, the basic one) to heating of electrodes. Therefore, the anode fall cannot be neglected, at design an electrode and ballast of amalgam lamps with operating discharge current frequency of tens of kHz.  相似文献   

4.
Analysis of Certain Errors in Squid Axon Voltage Clamp Measurements   总被引:14,自引:1,他引:13       下载免费PDF全文
Localized membrane current and potential measurements were made on the squid giant axon in voltage clamp experiments. Spatial control of potential was impaired by the use of axial current supplying electrodes with surface resistance greater than 20 ohms for a centimeter length of axon. No region of membrane which was indeed subjected to a potential step showed more than one inward current peak. Other patterns were results of space clamp failure. Membrane current and potential patterns during space clamp failure were approximately reproduced in computations on a model containing two membrane patches obeying the equations of Hodgkin and Huxley. Non-uniformities in the axon or electrodes are not necessary for non-uniform electrical behavior. An extension of the core conductor model which includes the axial wire and external solution has been analyzed. The space constant of electrotonic spread is less than 0.5 mm with a usable electrode. Errors of about 5 per cent are introduced by ignoring the external solution. Resistance between the membrane and the control electrodes reduces the control and a few ohm cm2 could lead to serious errors in interpretation.  相似文献   

5.
An Analysis of the Membrane Potential along a Clamped Squid Axon   总被引:2,自引:0,他引:2       下载免费PDF全文
A partially depolarized squid axon membrane is assumed to have a quasi-steady state negative resistance, the membrane potential is clamped at one point, and a distribution of potential along the axon is obtained from the cable equation. Nominal experimental values of -2 ohm cm2 for the membrane and 6 ohm cm2 for the internal and external current electrodes and the axoplasm and sea water between them are used for illustration. The potential and current may be uniform for an axon and electrode length less than 1.2 mm. For a long axon the potential varies as the cosine of the distance within 0.8 mm of the control point. Beyond this the potential variation is exponential and the entire pattern is about 5 mm long. The average current density out to 0.3 mm from the control point is within 10 per cent of the potential clamp value. These distributions are stable for control amplifications of about unity and more.  相似文献   

6.
Enzymatic biofuel cell based on enzyme modified anode and cathode electrodes are both powered by ethanol and operate at ambient temperature is described. The anode of the presented biofuel cell was based on immobilized quino-hemoprotein-alcohol dehydrogenase (QH-ADH), while the cathode on co-immobilized alcohol oxidase (AOx) and microperoxidase (MP-8). Two enzymes AOx and MP-8 acted in the consecutive mode and were applied in the design of the biofuel cell cathode. The ability of QH-ADH to transfer electrons directly towards the carbon-based electrode and the ability of MP-8 to accept electrons directly from the same type of electrodes was exploited in this biofuel cell design. Direct electron transfer (DET) to/from enzymes was the basis for generating an electric potential between the anode and cathode. Application of immobilized enzymes and the harvesting of the same type of fuel at both electrodes (cathode and anode) avoided the compartmentization of enzymatic biofuel cell. The maximal open circuit potential of the biofuel cell was 240mV.  相似文献   

7.
Electrode System for the Determination of Microbial Populations   总被引:4,自引:2,他引:2       下载免费PDF全文
Determinations of microbial populations were carried out by using a new electrode system composed of two electrodes. Each electrode was constructed from a platinum anode and a silver peroxide cathode. The anode of the reference electrode was covered with cellulose dialysis membrane. The response time of the electrode system was 15 min in culture broth, and current differences between the two electrodes were proportional to populations of microbial cells in cultures of Saccharomyces cerevisiae and Lactobacillus fermentum. Current differences were reproducible; the average relative error was 5%. Furthermore, cell populations of S. cerevisiae in a fermentor could be continuously estimated by using this electrochemical method.  相似文献   

8.
A method similar to the sucrose-gap technique introduced be Stäpfli is described for measuring membrane potential and current in singly lobster giant axons (diameter about 100 micra). The isotonic sucrose solution used to perfuse the gaps raises the external leakage resistance so that the recorded potential is only about 5 per cent less than the actual membrane potential. However, the resting potential of an axon in the sucrose-gap arrangement is increased 20 to 60 mv over that recorded by a conventional micropipette electrode when the entire axon is bathed in sea water. A complete explanation for this effect has not been discovered. The relation between resting potential and external potassium and sodium ion concentrations shows that potassium carries most of the current in a depolarized axon in the sucrose-gap arrangement, but that near the resting potential other ions make significant contributions. Lowering the external chloride concentration decreases the resting potential. Varying the concentration of the sucrose solution has little effect. A study of the impedance changes associated with the action potential shows that the membrane resistance decreases to a minimum at the peak of the spike and returns to near its initial value before repolarization is complete (a normal lobster giant axon action potential does not have an undershoot). Action potentials recorded simultaneously by the sucrose-gap technique and by micropipette electrodes are practically superposable.  相似文献   

9.
A new one-compartment fuel cell was composed of a rubber bunged bottle with a center-inserted anode and a window-mounted cathode containing an internal, proton-permeable porcelain layer. This fuel cell design was less expensive and more practical than the conventional two-compartment system, which requires aeration and a ferricyanide solution in the cathode compartment. Three new electrodes containing bound electron mediators including a Mn(4+)-graphite anode, a neutral red (NR) covalently linked woven graphite anode, and an Fe(3+)-graphite cathode were developed that greatly enhanced electrical energy production (i.e., microbial electron transfer) over conventional graphite electrodes. The potentials of these electrodes measured by cyclic voltametry at pH 7.0 were (in volts): +0.493 (Fe(3+)-graphite); +0.15 (Mn(4+)-graphite); and -0.53 (NR-woven graphite). The maximal electrical productivities obtained with sewage sludge as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode were 14 mA current, 0.45 V potential, 1,750 mA/m(2) current density, and 788 mW/m(2) of power density. With Escherichia coli as the biocatalyst and using a Mn(4+)-graphite anode and a Fe(3+)-graphite cathode, the maximal electrical productivities obtained were 2.6 mA current, 0.28 V potential, 325 mA/m(2) current density, and 91 mW/m(2) of power density. These results show that the amount of electrical energy produced by microbial fuel cells can be increased 1,000-fold by incorporating electron mediators into graphite electrodes. These results also imply that sewage sludge may contain unique electrophilic microbes that transfer electrons more readily than E. coli and that microbial fuel cells using the new Mn(4+)-graphite anode and Fe(3+)-graphite cathode may have commercial utility for producing low amounts of electrical power needed in remote locations.  相似文献   

10.
Ionic Current Measurements in the Squid Giant Axon Membrane   总被引:17,自引:14,他引:3       下载免费PDF全文
The concepts, experiments, and interpretations of ionic current measurements after a step change of the squid axon membrane potential require the potential to be constant for the duration and the membrane area measured. An experimental approach to this ideal has been developed. Electrometer, operational, and control amplifiers produce the step potential between internal micropipette and external potential electrodes within 40 microseconds and a few millivolts. With an internal current electrode effective resistance of 2 ohm cm.2, the membrane potential and current may be constant within a few millivolts and 10 per cent out to near the electrode ends. The maximum membrane current patterns of the best axons are several times larger but of the type described by Cole and analyzed by Hodgkin and Huxley when the change of potential is adequately controlled. The occasional obvious distortions are attributed to the marginal adequacy of potential control to be expected from the characteristics of the current electrodes and the axon. Improvements are expected only to increase stability and accuracy. No reason has been found either to question the qualitative characteristics of the early measurements or to so discredit the analyses made of them.  相似文献   

11.
Electrochemical impedance spectroscopy (EIS) was used to study the behavior of a microbial fuel cell (MFC) during initial biofilm growth in an acetate-fed, two-chamber MFC system with ferricyanide in the cathode. EIS experiments were performed both on the full cell (between cathode and anode) as well as on individual electrodes. The Nyquist plots of the EIS data were fitted with an equivalent electrical circuit to estimate the contributions of various intrinsic resistances to the overall internal MFC impedance. During initial development of the anode biofilm, the anode polarization resistance was found to decrease by over 70% at open circuit and by over 45% at 27 microA/cm(2), and a simultaneous increase in power density by about 120% was observed. The exchange current density for the bio-electrochemical reaction on the anode was estimated to be in the range of 40-60 nA/cm(2) for an immature biofilm after 5 days of closed circuit operation, which increased to around 182 nA/cm(2) after more than 3 weeks of operation and stable performance in an identical parallel system. The polarization resistance of the anode was 30-40 times higher than that of the ferricyanide cathode for the conditions tested, even with an established biofilm. For a two-chamber MFC system with a Nafion 117 membrane and an inter-electrode spacing of 15 cm, the membrane and electrolyte solution dominate the ohmic resistance and contribute to over 95% of the MFC internal impedance. Detailed EIS analyses provide new insights into the dominant kinetic resistance of the anode bio-electrochemical reaction and its influence on the overall power output of the MFC system, even in the high internal resistance system used in this study. These results suggest that new strategies to address this kinetic constraint of the anode bio-electrochemical reactions are needed to complement the reduction of ohmic resistance in modern designs.  相似文献   

12.
Insertion of electrically floating wires along the axis of a squid giant axon produces an apparent increase in diameter in the region where the wire surface has been treated to give it a low resistance. The shape of action potentials propagating into this region depend upon the surface resistance (and the length) of the wire. As this segment's internal resistance is lowered by reducing the wire's surface resistance, the following characteristic sequence of changes in the action potential is seen at the transition region: (a) the duration increases; (b) two peaks develop, the first one generated in the normal axon region and the second one generated later in the axial wire region, and; (c) blockage occurs (for a very low resistance wire). Action potentials recorded at the membrane region near the tip of the axial wire in (b) resemble those recorded at the initial segment of neurons upon antidromic invasions. Squid axon action potentials propagated from a normal region into that containing the low resistance wire also resemble antidromic invasions recorded in neuron somas. Hyperpolarizing current pulses applied through the wire act as if the wire surface resistance was momentarily reduced. For example, the two components of the action potential recorded at the axial wire membrane region noted in (b) can be sequentially blocked by the application of increasing hyperpolarizing current through the wire. Similar effects are seen when hyperpolarizing currents are injected into motoneuron somas. It is concluded that the geometrical properties of the junction of a neuron axon with its soma may be in themselves sufficient to determine the shape of the action potentials usually recorded by microelectrodes.  相似文献   

13.
Metallic potassium (K) is a desirable anode for potassium secondary batteries due to its low electrode potential in nonaqueous electrolytes and high theoretical capacity. Nevertheless, instability caused by dendritic growth, large volume changes, and parasitic side reactions hamper its practical application. Here, an anode containing metallic K is fabricated by infiltrating an aligned carbon nanotube membrane (ACM) with molten K because of its good wettability to molten K due to the strong capillary forces. The K metal is spatially distributed on the 3D ACM framework, which offers sufficient electrode/electrolyte contact for charge transfer. The robust ACM host provides a large number of K nucleation sites and physically confines the K deposited there, thus mitigating dimensional changes during cycling. The pathways for electrons and ions in the anode are associated to form a mixed conducting network, which is beneficial for the electrochemical redox. Consequently, the anode shows stable plating/stripping profiles with low polarization in symmetric cells using conventional carbonate‐based electrolytes. In addition, dendrite growth is suppressed, and the anode demonstrates excellent suitability when paired with a Prussian blue cathode in a full cell. This design strategy is expected to provide a way to address the problems with using metallic K anodes.  相似文献   

14.
Several microbial associations were obtained from natural and anthropogenic sources. All of the associations grow well on glucose and significantly worse on acetate. We observed 80–95% glucose consumption during 3–5 days of growth. The oxidation of substrates by the cultures generates an electric potential difference between anode and cathode electrodes of a microbial fuel cell (MFC). The value of the potential difference depends on the nature of the association and the substrate and reaches 400–500 mV. The potential difference generation accompanied by a shift to the negative region of the medium redox potential (E h ) to — (400–500) mV. This indicates H2 evolution by the association cultures during oxidation of carbohydrates. Artificial redox mediators, such as tetramethyl-p-phenylenediamine, phenazine methosulfate, and benzyl viologen, were able to increase up to 15% the difference in electrical potential across the electrodes of the MFC. It is assumed that an increase in the potential difference across the electrodes induced by the redox mediators is due to their direct involvement in the transfer of electrons from the bacteria in the incubation medium to the MFC anode electrode. The direct measurement of current and potential difference on the electrodes in a short-circuit mode shows that the internal resistance of the MFC is equal to 1 kΩ and the power reaches 5 μW. Undoubtedly, this testifies to the low efficiency developed by the MFE.  相似文献   

15.
The use of porous electrodes like graphite felt as anode material has the potential of achieving high volumetric current densities. High volumetric current densities, however, may also lead to mass transport limitations within these porous materials. Therefore, in this study we investigated the mass and charge transport limitations by increasing the speed of the forced flow and changing the flow direction through the porous anode. Increase of the flow speed led to a decrease in current density when the flow was directed towards the membrane caused by an increase in anode resistance. Current density increased at higher flow speed when the flow was directed away from the membrane. This was caused by a decrease in transport resistance of ions through the membrane which increased the buffering effect of the system. Furthermore, the increase in flow speed led to an increase of the coulombic efficiency by 306%.  相似文献   

16.
Alternating current impedance measurements have been made over a wide frequency range on the giant axon from the stellar nerve of the squid, Loligo pealii, during the passage of a nerve impulse. The transverse impedance was measured between narrow electrodes on either side of the axon with a Wheatstone bridge having an amplifier and cathode ray oscillograph for detector. When the bridge was balanced, the resting axon gave a narrow line on the oscillograph screen as a sweep circuit moved the spot across. As an impulse passed between impedance electrodes after the axon had been stimulated at one end, the oscillograph line first broadened into a band, indicating a bridge unbalance, and then narrowed down to balance during recovery. From measurements made during the passage of the impulse and appropriate analysis, it was found that the membrane phase angle was unchanged, the membrane capacity decreased about 2 per cent, while the membrane conductance fell from a resting value of 1000 ohm cm.2 to an average of 25 ohm cm.2 The onset of the resistance change occurs somewhat after the start of the monophasic action potential, but coincides quite closely with the point of inflection on the rising phase, where the membrane current reverses in direction, corresponding to a decrease in the membrane electromotive force. This E.M.F. and the conductance are closely associated properties of the membrane, and their sudden changes constitute, or are due to, the activity which is responsible for the all-or-none law and the initiation and propagation of the nerve impulse. These results correspond to those previously found for Nitella and lead us to expect similar phenomena in other nerve fibers.  相似文献   

17.
The excitation of pyramidal cells in the motor cortex, produced by electric fields generated by distant electrodes or by electromagnetic induction, has been modelled. Linear, steady-state models of myelinated axons capture most of the geometrical aspects of neurone activation in electric fields. Some non-linear features can be approximated. Models with a proximal sealed-end and distal infinite axon, or of finite length, are both serviceable. Surface anodal stimulation produces hyperpolarisation of the proximal axon (closest to the anode) and depolarisation in the distal axon. The point of maximum depolarisation can be influenced by the location of the cathode (greater separation of anode and cathode causes more distal depolarisation). Axon bends can produce very localised depolarisation. Cathodal stimulation may be less effective than anodal as a result of anodal block of conduction of action potentials in the distal axon. The latencies of responses to anodal stimulation, recorded in the distal axon, will decrease as the stimulus strength is increased and the point of action potential initiation moves distally node by node. Larger jumps in latency will be produced when the point of action potential initiation moves from one axon bend to another.  相似文献   

18.
By miniaturizing the original MacInnes and Dole glass-membrane pH electrode a new pH microelectrode has been developed. The technique developed utilizes the tip of a high electrical resistance glass pipet that can be sealed with a thin membrane of H+-sensitive glass. Single-barreled electrodes have been made with tip diameters ranging from 1.5 to 100 μm and double-barreled electrodes with tip diameters from 2 to 28 μm. The glass-membrane pH microelectrode provided a means for sensing the pH of biological solutions with an electrode having theoretical slope and tip configurational control. The most unique characteristics of the electrode were: the pH sensing surface was quite small, the tip diameter could be controlled, and the problem of electrode insulation was eliminated.  相似文献   

19.
Axon voltage-clamp simulations. A multicellular preparation.   总被引:4,自引:0,他引:4       下载免费PDF全文
  相似文献   

20.
Mechanisms of tumor electrochemical treatment (ECT) were studied using normal dog liver. Five physical and chemical methods were used. Two platinum electrodes were inserted into an anesthetized dog's liver at 3 cm separation. A voltage of 8.5 V direct current (DC) at an average current of 30 mA was applied for 69 min; total charge was 124 coulombs. Concentrations of selected ions near the anode and cathode were measured. The concentrations of Na+ and K+ ions were higher around the cathode, whereas the concentration of Cl ions was higher around the anode. Water contents and pH were determined near the anode and the cathode at the midpoint between the two electrodes and in an untreated area away from the electrodes. Hydration occurred around the cathode, and dehydration occurred around the anode. The pH values were 2.1 near the anode and 12.9 near the cathode. Spectrophotometric scans of the liver sample extract were obtained, and the released gases were identified by gas chromatography as chlorine at the anode and hydrogen at the cathode. These results indicate that a series of electrochemical reactions take place during ECT. The cell metabolism and its environment are severely disturbed. Both normal and tumor cells are rapidly and completely destroyed in this altered environment. We believe that the above reactions are the ECT mechanisms for treating tumors. Bioelectromagnetics 18:2–7, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号