首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The effect of the dipolar ions, glycine, glycylglycine, and glycylglycylglycine on the polymerization of tobacco mosaic virus (TMV) protein has been studied by the methods of light scattering and ultracentrifugation. All three dipolar ions promote polymerization. The major reaction in the early stage is transition from the 4 S to the 20 S state. As in the absence of dipolar ions, the polymerization is enhanced by an increase in temperature; it is endothermic and therefore entropy-driven. The effect of the dipolar ions can be understood in terms of their action as salting-out agents; they increase the activity coefficient of TMV A protein, the 4 S material, and thus shift the equilibrium toward the 20 S state. The salting-out constants, K, for the reaction in 0.10 ionic strength phosphate buffer at pH 6.7 was found by the light scattering method to be 1.6 for glycine, 2.5 for glycylglycine, and 2.5 for glycylglycylglycine. A value of 2.7 was obtained by the ultracentrifugation method for glycylglycine in phosphate buffer at 0.1 ionic strength and pH 6.8 at 10 degrees C. For both glycine and glycylglycine, K increases when the ionic strength of the phosphate buffer is decreased. This result suggests that electrolytes decrease the activity coefficient of the dipolar ions, a salting-in phenomenon. However, the salting-in constants evaluated from these results are substantially higher than those previously determined by solubility measurements. The effect of glycine and glycylglycine on polymerization was studied at pH values between 6.2 and 6.8. The effectiveness of both dipolar ions is approximately 50% greater at pH 6.8 than at pH 6.2. The variation of the extent of polymerization with pH in the presence of the dipolar ions is consistent with the interpretation that approximately one hydrogen ion is bound for half of the polypeptide units in the polymerized A protein.  相似文献   

2.
1. The electrolyte composition, the pH, and freezing points of the fluids of several invertebrates and one primitive chordate are reported. 2. Fluids of the worms, echinoderms, and the clam Venus were isotonic with sea water; fluids of the Arthropoda were hypertonic to sea water. 3. The pH of all fluids was below that of sea water. In the Arthropoda and Myxine less individual variation in pH appeared than in the echinoderms and worms. 4. Ratios of ionic concentrations in the fluid to those in the sea water indicated (1) uniform distribution of ions between the internal and external media for the echinoderms and Venus, (2) differential distribution of potassium and magnesium in the worms; (3) differential distribution of sulfate, magnesium, potassium, and calcium in the Arthropoda; and (4) differential distribution of calcium, magnesium, and sulfate in Myxine. 5. The unequal distribution of ions implies the expenditure of energy against a concentration gradient across the absorbing or excreting membranes, a capacity frequently overlooked in the invertebrates. 6. The sera of the Arthropoda from diluted sea water showed higher concentrations of sodium, potassium, calcium, and chloride ions relative to the respective concentrations in the external medium than in normal sea water, and also showed different orders for those ions. 7. The increase in osmotic pressure of the sera of the animals moving into brackish water is caused by unequal accumulation of sodium, potassium, calcium, and chloride ions. Sulfate and magnesium ionic ratios do not change.  相似文献   

3.
How Hofmeister ion interactions affect protein stability.   总被引:1,自引:1,他引:0  
Model compound studies in the literature show how Hofmeister ion interactions affect protein stability. Although model compound results are typically obtained as salting-out constants, they can be used to find out how the interactions affect protein stability. The null point in the Hofmeister series, which divides protein denaturants from stabilizers, arises from opposite interactions with different classes of groups: Hofmeister ions salt out nonpolar groups and salt in the peptide group. Theories of how Hofmeister ion interactions work need to begin by explaining the mechanisms of these two classes of interactions. Salting-out nonpolar groups has been explained by the cavity model, but its use is controversial. When applied to model compound data, the cavity model 1) uses surface tension increments to predict the observed values of the salting-out constants, within a factor of 3, and 2) predicts that the salting-out constant should increase with the number of carbon atoms in the aliphatic side chain of an amino acid, as observed. The mechanism of interaction between Hofmeister ions and the peptide group is not well understood, and it is controversial whether this interaction is ion-specific, or whether it is nonspecific and the apparent specificity resides in interactions with nearby nonpolar groups. A nonspecific salting-in interaction is known to occur between simple ions and dipolar molecules; it depends on ionic strength, not on position in the Hofmeister series. A theory by Kirkwood predicts the strength of this interaction and indicates that it depends on the first power of the ionic strength. Ions interact with proteins in various ways besides the Hofmeister ion interactions discussed here, especially by charge interactions. Much of what is known about these interactions comes from studies by Serge Timasheff and his co-workers. A general model, suitable for analyzing diverse ion-protein interactions, is provided by the two-domain model of Record and co-workers.  相似文献   

4.
Zhou HX 《Proteins》2005,61(1):69-78
Salting-out of proteins was discovered in the nineteenth century and is widely used for protein separation and crystallization. It is generally believed that salting-out occurs because at high concentrations salts and the protein compete for solvation water. Debye and Kirkwood suggested ideas for explaining salting-out (Debeye and MacAulay, Physik Z; 1925;131:22-29; Kirkwood, In: Proteins, amino acids and peptides as ions and dipolar ions. New York: Reinhold; 1943. p 586-622). However, a quantitative theory has not been developed, and such a theory is presented here. It is built on Kirkwood's idea that a salt ion has a repulsive interaction with an image charge inside a low dielectric cavity. Explicit treatment is given for the effect of other salt ions on the interaction between a salt ion and its image charge. When combined with the Debye-Hückel effect of salts on the solvation energy of protein charges (i.e., salting-in), the characteristic curve of protein solubility versus salt concentration is obtained. The theory yields a direct link between the salting-out effect and surface tension and is able to provide rationalizations for the effects of salt on the folding stability of several proteins.  相似文献   

5.
1. Measurements on the densities, viscosities, dielectric constants, and specific conductances of pure anhydrous and water-saturated guaiacol at 25°C. are reported. 2. The solubility of water in guaiacol at 25°C., and its effect on the electrical conductivity of a sodium guaiacolate solution is given. 3. Electrical conductivity measurements are reported on solutions of sodium and potassium guaiacolates in water-saturated guaiacol at 25°C. 4. The decrease of electrical conductivity with increasing concentration for these salts is explained on the basis of an ionic equilibrium combined with the interionic attraction theory of Debye and Hückel. 5. The limiting equivalent conductances of sodium and potassium guaiacolates in water-saturated guaiacol at 25°C., the corresponding limiting ionic mobilities, and the dissociation constants are computed from the conductivity measurements. The salts are found to be weak electrolytes with dissociation constants of the order of 5 x 10–6.  相似文献   

6.
1. The solubility in water of purified, uncombined casein has previously been reported to be 0.11 gm. in 1 liter at 25°C. This solubility represents the sum of the concentrations of the casein molecule and of the soluble ions into which it dissociates. 2. The solubility of casein has now been studied in systems containing the protein and varying amounts of sodium hydroxide. It was found that casein forms a well defined soluble disodium compound, and that solubility was completely determined by (a) the solubility of the casein molecule, and (b) the concentration of the disodium casein compound. 3. In our experiments each mol of sodium hydroxide combined with approximately 2,100 gm. of casein. 4. The equivalent combining weight of casein for this base is just half the minimal molecular weight as calculated from the sulfur and phosphorus content, and one-sixth the minimal molecular weight calculated from the tryptophane content of casein. 5. From the study of systems containing the protein and very small amounts of sodium hydroxide it was possible to determine the solubility of the casein molecule, and also the degree to which it dissociated as a divalent acid and combined with base. 6. Solubility in such systems increased in direct proportion to the amount of sodium hydroxide they contained. 7. The concentration of the soluble casein compound varied inversely as the square of the hydrogen ion concentration, directly as the solubility of the casein molecule, Su, and as the constants Ka1 and Ka2 defining its acid dissociation. 8. The product of the solubility of the casein molecule and its acid dissociation constants yields the solubility product constant, Su·Ka1·Ka2 = 2.2 x 10–12 gm. casein per liter at 25°C. 9. The solubility of the casein molecule has been estimated from this constant, and also from the relation between the solubility of the casein and the sodium hydroxide concentration, to be approximately 0.09 gm. per liter at 25°C. 10. The product of the acid dissociation constants, Ka1 and Ka2, must therefore be 24 x 10–12N. 11. It is believed that these constants completely characterize the solubility of casein in systems containing the protein and small amounts of sodium hydroxide.  相似文献   

7.
To elucidate interactions of amino-carboxylate dipole and amide group of amino acids with DNA, glycine and glutamine, concentration dependences of the melting curves and CD spectra of calf thymus DNA at low ionic strength (10(-4) M) Na-citrate have been studied. A considerable increase of the melting temperature delta t1/2 and a decrease of the temperature interval of melting delta t with the rise of glycine concentration were observed without changes in the CD spectrum. A comparison was made between the influence of dipolar glycine ion and isolated amino and carboxylate ions of ammonium acetate. The data obtained indicated the predominance of electrostatic interaction of glycine with DNA phosphates until the ligand concentration was approximately 0.6 M and, apparently, specific interactions of carboxylate ion with guanine at higher glycine concentrations. Destabilizing effect of glutamine on DNA at a concentration of 5.10(-3) M was observed, whereas at higher concentrations two-phase increase of delta t1/2 was shown. Small changes in DNA CD spectrum under the action of glutamine were registered. The comparison data for glutamine and acrylamide showed that DNA destabilizing effect was due to the amide group. The destabilizing effect of amide group can be explained by its interaction with the bases in single-stranded regions of DNA with the formation of two H-bonds. It is possible that the increase of DNA delta t1/2 is the result of the interaction of phosphates both with aminocarboxylate and amide groups of glutamine.  相似文献   

8.
The rate of larval emergence from cysts of the beet eelworm in a variety of aqueous solutions containing organic and inorganic substances is significantly higher than the emergence rate in water. It is suggested that differences between larval emergence rates in monoamino-monocarboxylic amino-acids may be related to the lipid solubility of these substances and their ability to penetrate the egg membranes. The larval emergence rate in fructose, glucose, sucrose and maltose was significantly higher than that in water, but in raffinose, arabinose and xylose the rate of emergence was no higher than in water. A high rate of larval emergence occurred in sodium chloride, potassium chloride and mercuric chloride, but not in magnesium chloride or calcium chloride. Experiments with several other organic solutions are described. There is an optimum concentration for larval emergence in beet diffusate. The osmotic pressure of the diffusate when maximum emergence occurred was 0·48 atm. Measurements of shrinkage of unhatched larvae in various concentrations of urea, sodium chloride and sucrose showed that decreasing rates of emergence at higher concentrations may be due to changes in the unhatched larvae brought about: by an osmotic effect. High concentrations of beet diffusate may have a similar effect.  相似文献   

9.
Some characteristics of protein precipitation by salts   总被引:1,自引:0,他引:1  
The solubilities of lysozyme, alpha-chymotrypsin and bovine serum albumin (BSA) were studied in aqueous electrolyte solution as a function of ionic strength, pH, the chemical nature of salt, and initial protein concentration. Compositions were measured for both the supernatant phase and the precipitate phase at 25 degrees C. Salts studied were sodium chloride, sodium sulfate, and sodium phosphate. For lysozyme, protein concentrations in supernatant and precipitate phases are independent of the initial protein concentration; solubility can be represented by the Cohn salting-out equation. Lysozyme has a minimum solubility around pH 10, close to its isoelectric point (pH 10.5). The effectiveness of the three salts studied for precipitation were in the sequence sulfate > phosphate > chloride, consistent with the Hofmeister series. However, for alpha-chymotrypsin and BSA, initial protein concentration affects the apparent equillibrium solubility. For these proteins, experimental results show that the compositions of the precipitate phase are also affected by the initial protein concentration. We define a distribution coefficient kappa(e) to represent the equilibrium ratio of the protein concentration in the supernatant phase to that in the precipitate phase. When the salt concentration is constant, the results show that, for lysozyme, the protein concentrations in both phases are independent of the initial protein concentrations, and thus kappa(e) is a constant. For alpha-chymotrypsin and BSA, their concentrations in both phases are nearly proportional to the initial protein concentrations, and therefore, for each protein, at constant salt concentration, the distribution coefficient kappa(e) is independent of the initial protein concentration. However, for both lysozyme and alpha-chymotrypsin, the distribution coefficient falls with increasing salt concentration. These results indicate that care must be used in the definition of solubility. Solubility is appropriate when the precipitate phase is pure, but when it is not, the distribution coefficient better describes the phase behavior. (c) 1992 John Wiley & Sons, Inc.  相似文献   

10.
A detailed study was made on the influence of salts on those physicochemical properties of sodium gelatinate which are regulated by Donnan''s law of membrane equilibria; namely, osmotic pressure, membrane potentials, and swelling. It was found that the influence of salts on these properties in the case of sodium gelatinate obeys the same rules of valency as in the case of the influence of salts on gelatin chloride as discussed in a previous publication. The rules state that when a salt is added to an ionized protein, without causing a change in the hydrogen ion concentration of the protein, the general effect is a depression of the mentioned properties. The degree of depression depends not only on the concentration of the salt but on the electrical properties of the ions constituting the salt. Of the two or more oppositely charged ions of which a salt consists, only the valency of those ions which carry charges opposite to those carried by the protein ions affects the degree of depression which increases with the valency of the ions. It was also found that the phenomenon of swelling of gelatin becomes modified by solubility of the gelatin when salts are added in concentrations higher than N/4. Emphasis is laid on the point that the valency rule holds perfectly also in relation to swelling as long as the phenomenon is pure swelling which is the case when salt solutions of concentrations lower than N/4 are added to gelatin.  相似文献   

11.
1. Colloids have been divided into two groups according to the ease with which their solutions or suspensions are precipitated by electrolytes. One group (hydrophilic colloids), e.g., solutions of gelatin or crystalline egg albumin in water, requires high concentrations of electrolytes for this purpose, while the other group (hydrophobic colloids) requires low concentrations. In the latter group the precipitating ion of the salt has the opposite sign of charge as the colloidal particle (Hardy''s rule), while no such relation exists in the precipitation of colloids of the first group. 2. The influence of electrolytes on the solubility of solid Na caseinate, which belongs to the first group (hydrophilic colloids), and of solid casein chloride which belongs to the second group (hydrophobic colloids), was investigated and it was found that the forces determining the solution are entirely different in the two cases. The forces which cause the hydrophobic casein chloride to go into solution are forces regulated by the Donnan equilibrium; namely, the swelling of particles. As soon as the swelling of a solid particle of casein chloride exceeds a certain limit it is dissolved. The forces which cause the hydrophilic Na caseinate to go into solution are of a different character and may be those of residual valency. Swelling plays no rôle in this case, and the solubility of Na caseinate is not regulated by the Donnan equilibrium. 3. The stability of solutions of casein chloride (requiring low concentrations of electrolytes for precipitation) is due, first, to the osmotic pressure generated through the Donnan equilibrium between the casein ions tending to form an aggregate, whereby the protein ions of the nascent micellum are forced apart again; and second, to the potential difference between the surface of a micellum and the surrounding solution (also regulated by the Donnan equilibrium) which prevents the further coalescence of micella already formed. This latter consequence of the Donnan effect had already been suggested by J. A. Wilson. 4. The precipitation of this group of hydrophobic colloids by salts is due to the diminution or annihilation of the osmotic pressure and the P.D. just discussed. Since low concentrations of electrolytes suffice for the depression of the swelling and P.D. of the micella, it is clear why low concentrations of electrolytes suffice for the precipitation of hydrophobic colloids, such as casein chloride. 5. This also explains why only that ion of the precipitating salt is active in the precipitation of hydrophobic colloids which has the opposite sign of charge as the colloidal ion, since this is always the case in the Donnan effect. Hardy''s rule is, therefore, at least in the precipitation of casein chloride, only a consequence of the Donnan effect. 6. For the salting out of hydrophilic colloids, like gelatin, from watery solution, sulfates are more efficient than chlorides regardless of the pH of the gelatin solution. Solution experiments lead to the result that while CaCl2 or NaCl increase the solubility of isoelectric gelatin in water, and the more, the higher the concentration of the salt, Na2SO4 increases the solubility of isoelectric gelatin in low concentrations, but when the concentration of Na2SO4 exceeds M/32 it diminishes the solubility of isoelectric gelatin the more, the higher the concentration. The reason for this difference in the action of the two salts is not yet clear. 7. There is neither any necessity nor any room for the assumption that the precipitation of proteins is due to the adsorption of the ions of the precipitating salt by the colloid.  相似文献   

12.
1. The conductivities of aqueous solutions of glycine, d,l-valine, and l-asparagine have been determined, and comparisons have been made with similar data reported in the literature. 2. On the basis of certain theoretical considerations, calculations of the expected conductivities of aqueous solutions of glycine, asparagine, aspartic acid, and glutamic acid have been made and these data have been compared with similar data obtained experimentally. 3. The dissociation constants of the carboxyl groups of aspartic acid and glutamic acid have been calculated from conductivity data. 4. It is shown that alanine has no effect on the ionic atmosphere of solutions of potassium chloride.  相似文献   

13.
The effect of the addition of sodium chloride to gelatin solutions is shown from the Donnan relationship to increase the ionisation of the gelatin, the increase produced in acid solutions reaching a maximum at about 1/1000 molar salt concentration. This effect is attributed to the formation of complex ions. From the similar action of calcium and copper chlorides the effective combining power of gelatin for complex positive ion formation is deduced. The bearing of complex ion formation on the zwitter-ionic structure and solubility phenomena of proteins is pointed out.  相似文献   

14.
1. The solubility of mustard (H) in water and in molar sodium chloride was found to be 5.8 x 10–3 molar and 3.2 x 10–3 molar respectively or 0.92 mg. per ml. and 0.5 mg. per ml. Solubility curves have been drawn and the usefulness of this method in examining the homogeneity of H preparations as well as in establishing their solubility, is discussed. 2. Certain detergents increase the solubility of H in water. The solubility was found to increase with the concentration of detergent. 3. Many detergents were found to affect the interfacial tension between H and water so that with slight agitation liquid H breaks up into minute droplets. This in turn greatly accelerates the rate of solution.  相似文献   

15.
1. Solutions approximately isotonic with blood of strong and weak acids, several salts, glucose, and glycine were introduced in the resting stomachs of cats. The concentration and volume changes were recorded. 2. It was found that the stomach mucosa was permeable to the majority of the ions tested. There was also a permeability in the opposite direction from the blood (mucosa) to the stomach content, particularly of alkali chlorides. Poorly permeable substances were glucose, glycine, and sodium iodate. Pure weak acids such as acetic acid penetrated very rapidly. 3. The electrolyte concentration changes in the stomach content (or gastric juice) are pictured as an exchange diffusion; for instance, the hydrogen ions of an acid are exchanged against alkali ions of the mucosa or blood. 4. It is pointed out that the concept of the mucosa as an ion permeable membrane could be used as the foundation of a "diffusion theory," which can explain the acidity and chloride variations of the gastric juice without postulating neutralizing or diluting secretions.  相似文献   

16.
The hydrodynamic behavior of bovine myelin basic protein was studied by gel filtration through Sephadex G-100 under conditions which included variations in pH from 2 to 12, variations in ionic strength from 0.01 to 1.5 M at pH 2 and from 0.1 to 2 M at pH 7, and variations in guanidinium chloride concentration from 0 to 6 M. A number of well characterized compact globular proteins were subjected to the same conditions for comparison. Compact globular proteins showed major conformational transitions due to acid, alkali, and guanidinium chloride denaturation and, possibly, minor transitions as well. Myelin basic protein behaved like a flexible linear polyelectrolyte, expanding continuously between pH 11 and pH 2 to 3 at ionic strength 0.1 M and contracting continuously with increase in ionic strength at pH 2 and at pH 7 to the point of salting-out. Relatively low concentrations of guanidinium chloride (approximately 0.5 M) were sufficient to cause the basic protein to expand. With increasing concentration of the denaturant the molecule continued to expand, but in a noncooperative manner. These results demonstrated the lack of significant intramolecular stabilization in the protein.  相似文献   

17.
Effect of heavy water D2O on the rate of hydrolysis of ATP and pNPP by Na,K-ATPase was studied. Heavy water of high concentration inhibits the rate of ATPase reaction in all the studied ratios of the ions Na/K at constant ionic strength 150 mM. Activation of the enzyme was observed in the solution with low concentration of heavy water (less than 5%). The value of isotope effects depended on the ratio between sodium and potassium ion concentrations in the medium. At low temperature no activation of the enzyme with heavy water in low concentration was observed. Substitution of usual water for the heavy one was accompanied by a decrease of apparent constants of enzyme activation with sodium and potassium ions. During pNPP hydrolysis with Na,K-ATPase an increase of reaction rate in the medium with heavy water was observed. Substitution of potassium ions by cesium resulted in an increase of isotope effects during ATP and pNPP hydrolysis. Analysis of isotope effects in terms of the molecular model of sodium pump proposed permits a conclusion that the isotope effects of heavy water are explained by its influence as a solvent, the binding centres of potassium and sodium ions are localized in different regions of the enzyme differing in physico-chemical properties. The structure of sodium centres is controlled by hydrogen bonds, and of potassium ones--by hydrophobic interactions; the transport of ions by the enzyme is accompanied by dehydration of ions.  相似文献   

18.
THE SIGNIFICANCE OF IONIC CONCENTRATIONS IN THE INTERNAL MEDIA OF ANIMALS   总被引:1,自引:0,他引:1  
1. The electrical and ionic gradients across a cell membrane depend on its permeability properties, on the concentration and net valency of the organic constituents of the cytoplasm and on the critical energy barrier to the extrusion of sodium. Such considerations do not, however, explain the small extent to which the concentration of potassium varies in myoplasm which may, instead, be related to the effects of potassium on particular enzymes. 2. The fact that the apparent optimum level of potassium cannot usually be maintained in animals in which the extracellular level of sodium is below about 140 mM may explain why so many non-marine animals have internal media of about that concentration, for more concentrated body fluids would require more work for their regulation. 3. In axoplasm, the concentration of potassium is more nearly proportional to the concentration of sodium in the internal medium and this may partly explain the general correlation between the extracellular levels of sodium and potassium. 4. The relation between pH and temperature in poikilothermic vertebrates is such as to suggest that the prime function of acid-base regulation is to control the ionization of imidazole groups. 5. High tensions of carbon dioxide cannot be maintained in water-breathing animals because of the high solubility of this gas in water as compared with oxygen. Bicarbonate levels are correspondingly low to give a suitable pH. Higher tensions are possible in air-breathing animals, and also necessary if water and heat are to be conserved, but an uncertain upper limit is set by the need for oxygen. The associated higher levels of bicarbonate confer the advantage of better buffering. 6. Calcium and bicarbonate levels are not obviously limited by the solubility of calcium carbonate and a more general limitation on the composition of body fluids seems to arise from the low solubilities of calcium phosphates. 7. The pattern of ionic balance in vertebrate plasma, reflected in a nearly constant value to the molar ratio ([Ca] + 5 × 10--4)/([K] +0.034 [Na]), may be explained in terms of the maintenance of a constant electrical gradient across certain areas of cell membrane, between the inner and outer double layers. 8. The patterns of cation balance in the haemolymphs of molluscs, crustacea and insects are also reviewed, with emphasis on the correlations existing between the concentrations of different cations. An attempt is made to relate the correlations in the mollusca to the concentrations of cations at the surfaces of cells.  相似文献   

19.
1. Measurements are reported on the distribution of sodium and potassium guaiacolates between guaiacol and water at 25°C. 2. The variation of the partition coefficients with the concentration is explained with the aid of the Debye-Hückel interionic attraction theory and the assumption that the salts are strong electrolytes in water and weak electrolytes in guaiacol. 3. The dissociation constants of sodium and potassium guaiacolates in guaiacol previously computed from electrical conductivity determinations are shown to be in agreement with the corresponding values obtained from the distribution measurements. 4. From theoretical considerations an equation is derived with which it is possible to predict the magnitude of the limiting partition coefficients from the dielectric constants of the solvents, the size of the solute ions, and the temperature.  相似文献   

20.
The diffusion of hen egg-white lysozyme has been studied by dynamic light scattering in aqueous solutions of ammonium sulfate as a function of protein concentration to 30 g/liter. Experiments were conducted under the following conditions: pH 4-7 and ionic strength 0.05-5.0 M. Diffusivity data for ionic strengths up to 0.5 M were interpreted in the context of a two-body interaction model for monomers. From this analysis, two potential-of-mean-force parameters, the effective monomer charge, and the Hamaker constant were obtained. At higher ionic strength, the data were analyzed using a model that describes the diffusion coefficient of a polydisperse system of interacting protein aggregates in terms of an isodesmic, indefinite aggregation equilibrium constant. Data analysis incorporated multicomponent virial and hydrodynamic effects. The resulting equilibrium constants indicate that lysozyme does not aggregate significantly as ionic strength increases, even at salt concentrations near the point of salting-out precipitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号