首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A method is described for determining the diffusion coefficient of solutes by determining the rate of passage of the solute through a thin porous membrane between two solutions of different concentration. The method has been used to determine the diffusion coefficient of carbon monoxide hemoglobin. This was found to be 0.0420 ± 0.0005 cm.2 per day at 5°C. The molecular weight of carbon monoxide hemoglobin calculated by means of Einstein''s equation from this quantity is 68,600 ± 1,000.  相似文献   

2.
In some living cells the order of penetration of certain cations corresponds to that of their mobilities in water. This has led to the idea that electrolytes pass chiefly as ions through the protoplasmic surface in which the order of ionic mobilities is supposed to correspond to that found in water. If this correspondence could be demonstrated it would not prove that electrolytes pass chiefly as ions through the protoplasmic surface for such a correspondence could exist if the movement were mostly in molecular form. This is clearly shown in the models here described. In these the protoplasmic surface is represented by a non-aqueous layer interposed between two aqueous phases, one representing the external solution, the other the cell sap. The order of penetration through the non-aqueous layer is Cs > Rb > K > Na > Li. This will be recognized as the order of ionic mobilities in water. Nevertheless the movement is mostly in molecular form in the nonaqueous layer (which is used in the model to represent the protoplasmic surface) since the salts are very weak electrolytes in this layer. The chief reason for this order of penetration lies in the fact that the partition coefficients exhibit the same order, that of cesium being greatest and that of lithium smallest. The partition coefficients largely control the rate of entrance since they determine the concentration gradient in the non-aqueous layer which in turn controls the process of penetration. The relative molecular mobilities (diffusion constants) in the non-aqueous layer do not differ greatly. The ionic mobilities are not known (except for K+ and Na+) but they are of negligible importance, since the movement in the non-aqueous layer is largely in molecular form. They may follow the same order as in water, in accordance with Walden''s rule. Ammonium appears to enter faster than its partition coefficient would lead us to expect, which may be due to rapid penetration of NH3. This recalls the apparent rapid penetration of ammonium in living cells which has also been explained as due to the rapid penetration of NH3. Both observation and calculation indicate that the rate of penetration is not directly proportional to the partition coefficient but increases somewhat less rapidly. Many of these considerations doubtless apply to living cells.  相似文献   

3.
Summary The compound, 4,5,6,7-tetrachloro-2-methylbenzimidazole (TMB), has been found to markedly modify the steady-state valinomycin-mediated conductance of potassium (K+) ions through lipid bilayer membranes. TMB alone does not contribute significantly to membrane conductance, being electrically neutral in solution. In one of two classes of experiments (I), valinomycin is first added to the aqueous phases then changes of membrane conductance accompanying stepwise addition of TMB to the water are measured. In a second class of experiments (II), valinomycin is added to the membrane-forming solution, follwed by TMB additions to the surrounding water. In both cases membrane conductance shows an initial increase with increasing TMB concentration which is more pronounced at lower K+ ion concentration. At TMB concentrations in excess of 10–5 m, membrane conductance becomes independent of K+ ion concentration, in contrast to the linear dependence observed at TMB concentrations below 10–7 m. This transition is accompanied by a change of high field current-voltage characteristics from superlinear (or weakly sublinear) to a strongly sublinear form. All of these observations may be correlated by the kinetic model for carriermedicated transport proposed by Läuger and Stark (Biochim. Biophys. Acta 211:458, 1970) from which it may be concluded that valinomycin-mediated ion transport is limited by back diffusion of the uncomplexed carrier at high TMB concentrations. Experiments of class I reveal a sharp drop of conductance at high (>10–5 m) TMB concentration, not seen in class II experiments, which is attributed to blocked entry of uncomplexed carrier from the aqueous phases. Valinomycin initially in the membrane is removed by lateral diffusion to the surrounding torus. The time dependence of this removal has been studied in a separate series of experiments, leading to a measured coefficient of lateral diffusion for valinomycin of 5×10–6 cm2/sec at 25°C. This value is about two orders of magnitude larger than the corresponding coefficient for transmembrane carrier diffusion, and provides further evidence for localization of valinomycin in the membrane/solution interfaces.  相似文献   

4.
The translational diffusion coefficient D 20,w 0 , of monomeric human immunoglobulin G (IgG) has been studied by photon-correlation spectroscopy as a function of pH and protein concentration. At pH 7.6, we find D 20,w 0 =3.89×10–7±0.02 cm2/sec, in good agreement with the value determined by classic mehods. This value corresponds to an effective hydrodynamic radius R, of 55.1±0.3 Å. As pH is increased to 8.9; with the same ionic strength, the molecule appears to expand slightly (3.5% increase in hydrodynamic radius). The concentration dependence of the IgG diffusion constant is interpreted in terms of solution electrostatic effects and shows that long-range repulsive interactions are negligible in the buffer used. The diffusion coefficient for dimeric IgG has also been determined to be D20,w=2.81×10–7±0.04 cm2/sec at 1.6 mg/ml, which corresponds to a hydrodynamic radius of 75 Å. For light-scattering studies of protein molecules in the dimension range of 5–10 nm (Mr=105–107) we find monomeric horse spleen ferritin well suited as a reference standard. Ferritin is a spherical molecule with a hydrodynamic radius R of 6.9±0.1 nm and is stable for years in our standard Tris-HCl-NaCl buffer even at room temperature.  相似文献   

5.
1. A method for isolating a nucleoprotein from lysed staphylococci culture is described. 2. It is homogeneous in the ultracentrifuge and has a sedimentation constant of 650 x 10–13 cm. dyne–1 sec.–1, corresponding to a molecular weight of about 300,000,000. 3. The diffusion coefficient varies from about 0.001 cm.2/day in solutions containing more than 0.1 mg. protein/ml. to 0.02 in solutions containing less than 0.001 mg. protein/ml. The rate of sedimentation also decreases as the concentration decreases. It is suggested, therefore, that this protein exists in various sized molecules of from 500,000–300,000,000 molecular weight, the proportion of small molecules increasing as the concentration decreases. 4. This protein is very unstable and is denatured by acidity greater than pH 5.0, by temperature over 50°C. for 5 minutes. It is digested by chymo-trypsin but not by trypsin. 5. The loss in activity by heat, acid, and chymo-trypsin digestion is roughly proportional to the amount of denatured protein formed under these conditions. 6. The rate of diffusion of the protein is the same as that of the active agent. 7. The rate of sedimentation of the protein is the same as that of the active agent. 8. The loss in activity when susceptible living or dead bacteria are added to a solution of the protein is proportional to the loss in protein from the solution. Non-susceptible bacteria remove neither protein nor activity. 9. The relative ultraviolet light absorption, as determined directly, agrees with that calculated from Gates'' inactivation experiments in the range of 2500–3000 Å. u. but is somewhat greater in the range of 2000–2500 Å. u. 10. Solubility determinations showed that most of the preparations contained at least two proteins, one being probably the denatured form of the other. Two preparations were obtained, however, which had about twice the specific activity of the earlier ones and which gave a solubility curve approximating that of a pure substance. 11. It is suggested that the formation of phage may be more simply explained by analogy with the autocatalytic formation of pepsin and trypsin than by analogy with the far more complicated system of living organisms.  相似文献   

6.
Fick's second law has been used to predict the time course of electrical conductance change in isolated cuticles following the rapid change in bathing solution (KCI) from concentration C to 0.1 C. The theoretical time course is dependent on the coefficient of diffusion of KCI in the cuticle and the cuticle thickness. Experimental results, obtained from cuticles isolated from sour orange (Citrus aurantium), fit with a diffusion model of an isolated cuticle in which about 90% of the conductance change following a solution change is due to salts diffusing from polar pores in the wax, and 10% of the change is due to salt diffusion from the wax. Short and long time constants for the washout of KCI were found to be 0.11 and 3.8 hours, respectively. These time constants correspond to KCI diffusion coefficients of 1 × 10−15 and 3 × 10−17 square meters per second, respectively. The larger coefficient is close to the diffusion coefficient for water in polar pores of Citrus reported elsewhere (M Becker, G Kerstiens, J Schönherr [1986] Trees 1: 54-60). This supports our interpretation of the washout kinetics of KCI following a change in concentration of bathing solution.  相似文献   

7.
We have hypothesized that a major role of the apical H+-pump in mitochondria-rich (MR) cells of amphibian skin is to energize active uptake of Cl via an apical Cl/HCO3 -exchanger. The activity of the H+ pump was studied by monitoring mucosal [H+]-profiles with a pH-sensitive microelectrode. With gluconate as mucosal anion, pH adjacent to the cornified cell layer was 0.98 ± 0.07 (mean ± SEM) pH-units below that of the lightly buffered bulk solution (pH = 7.40). The average distance at which the pH-gradient is dissipated was 382 ± 18 μm, corresponding to an estimated “unstirred layer” thickness of 329 ± 29 μm. Mucosal acidification was dependent on serosal pCO2, and abolished after depression of cellular energy metabolism, confirming that mucosal acidification results from active transport of H+. The [H+] was practically similar adjacent to all cells and independent of whether the microelectrode tip was positioned near an MR-cell or a principal cell. To evaluate [H+]-profiles created by a multitude of MR-cells, a mathematical model is proposed which assumes that the H+ distribution is governed by steady diffusion from a number of point sources defining a set of particular solutions to Laplace''s equation. Model calculations predicted that with a physiological density of MR cells, the [H+] profile would be governed by so many sources that their individual contributions could not be experimentally resolved. The flux equation was integrated to provide a general mathematical expression for an external standing [H+]–gradient in the unstirred layer. This case was treated as free diffusion of protons and proton-loaded buffer molecules carrying away the protons extruded by the pump into the unstirred layer; the expression derived was used for estimating stationary proton-fluxes. The external [H+]-gradient depended on the mucosal anion such as to indicate that base (HCO3 ) is excreted in exchange not only for Cl , but also for Br and I, indicating that the active fluxes of these anions can be attributed to mitochondria-rich cells.  相似文献   

8.
Fluorescent antibody fragments of anti-muscle plasma membrane antibody bound as small fluorescent spots when applied by micropipetting to cultured myotubes. The spots were observed to enlarge with time. The rate of enlargement of fluorescent spots was greater when fragments were applied than when divalent antibody was used. It was also greater at 23°–25°C than at 0°–4°C. With glutaraldehyde-fixed cells no increase in the size of the spots was seen. The observations are consistent with the spread of fluorescent spots due to diffusion of surface protein antigens within the plane of a fluid membrane. From measurements of spot size against time, a diffusion constant of 1–3 x 10-9 cm2 s-1 can be calculated for muscle plasma membrane proteins of mol wt approximately 200,000. This value is consistent with other observations on the diffusion of surface antigens and of labeled lipid molecules in synthetic and natural membranes.  相似文献   

9.
Summary The ability of the gall-bladder to transport water between identical bathing solutions depends on active NaCl transport, which is thought to maintain the salt concentration in the lateral intercellular spaces above bathing solution levels and thus to create a local osmotic gradient. The mean value of this gradient has been estimated by an electrical procedure, based on measuring the small diffusion potential resulting from this gradient and from the preferential cation permeability of the gall-bladder. The electrical potential difference (p.d.) in maximally transporting rabbit gall-bladders is 1.4 mV, mucosal-solution positive to serosal solution. This p. d. is reversibly abolished or greatly reduced by six procedures which abolish or greatly reduce fluid transport (low temperature, replacement of Cl by SO 4 -- , replacement of Cl and HCO 3 by SO 4 -- , replacement of Na+ by choline, removal of HCO 3 , and metabolic poisoning). The p. d. is increased by symmetrical partial replacement of NaCl by sucrose, which is expected to increase the salt concentration gradient between the lateral spaces and the bathing solutions. Since the transport mechanism of the gall-bladder is a neutral NaCl pump that cannot produce a p. d. directly, it is concluded that the observed p. d. is the expected diffusion potential. From this diffusion potential and from the measured value of a diffusion potential resulting from a known NaCl concentration gradient, the mean concentration of NaCl in the lateral spaces is calculated to be of the order of 10mm above the bathing solution value. Comparison of the external osmotic gradient required to stop water flow with the p. d. recorded under this condition of zero flow supports the validity of interpreting the p.d. in this fashion as a measure of the excess local salt concentration.  相似文献   

10.
The diffusion coefficients for the exchange of potassium across the membrane of erythrocytes of humans, rats, and rabbits have been determined by the use of artificially radioactive potassium, both into and out of the erythrocytes both in vitro and in vivo. The diffusion coefficients found in minutes–1 were 0.2 to 0.25 x 10–3 for human, 0.32 to 0.665 x 10–3 for rabbits, and 1.0 x 10–3 for rat erythrocytes. Rabbit erythrocytes appear to be more permeable in vivo. Reasons are advanced to explain the failure of earlier workers to demonstrate appreciable exchange of potassium in erythrocytes.  相似文献   

11.
A highly purified and potent gonadotrophin in pregnant mare serum has been prepared. The preparation has been shown to be electrophoretically homogeneous in the Tiselius apparatus. The mobilities of the substance have been determined over a wide range of hydrogen ion concentrations. The isoelectric point lies at pH 2.60–2.65 and the value of See PDF for Equation is 4.0 x 10–5. Some chemical constituents have been studied. From the tryptophane and tyrosine content the molecular weight of the hormone is estimated to be 30,000. The hormone has been subjected to acetylation by ketene in aqueous solution at room temperature and the result suggests again the essentiality of free amino groups for the biological activity of the hormone. In this respect it is to be contrasted with human chorionic gonadotrophin.  相似文献   

12.
The spatial distribution and temporal variation of intracellular Ca ion in differentiated Neuroblastoma-Glia Hybridoma 108–15 cells (NG108–15) were investigated using a fluorescence microscope imaging technique. Fura-2 was used as a probe. Electrical current pulses of 10–20 µA were applied to axons connecting to NG cells in order to elicit the influx of Ca ion. The concentration of intracellular Ca is usually 50–80 nM in NG cells in the resting state. Upon stimulation, the Ca level increases by a factor of 2–5. The entry of Ca++ across cell membranes is followed by intracellular diffusion and the propagation of a wave front is clearly seen in digital images. The diffusion constant was calculated to be approximately 1.66×10–6 cm2/sec. This value is about one-fifth of the free diffusion coefficient of Ca ion in aqueous solution (7.82 × 10–6 cm2/sec). Cd ion, at the concentration of 1–2 mM, blocks the influx of Ca as expected whereas the influx is unaffected by TTX at the concentration of 0.1 – 0.2µM.  相似文献   

13.
Electrophoretic studies on purified crystalline ribonuclease showed the absence of any impurities differing in mobility from the bulk of material. The isoelectric point of ribonuclease was found by electrophoresis to be at about pH 7.8. Ultracentrifuge studies indicated fair homogeneity of ribonuclease in solution. Only one moving component has been observed. The molecular weight of ribonuclease was found to be 12,700 from rate of sedimentation (S 25 = 1.85 x 10–13 in 0.5 M (NH4)2SO4) and diffusion measurement (D = 1.36 x 10–6 in 0.5 M (NH4)2SO4), in good agreement with the average value of 13,000 found from equilibrium measurements. This low value for the molecular weight of a protein would seem to discredit the value 17,600 as representing a universal unit weight for proteins in general.  相似文献   

14.
1. The chlorophyll-protein compound of the spinach leaf has been studied in the air-driven ultracentrifuge using the Svedberg light-absorption method, and a direct-reading refractive index method. 2. When the untreated extracts are centrifuged at low speeds, the green protein sediments with a purely random spread of particle sizes confirming the fact that the protein is not in true solution. 3. In the presence of digitonin, bile salts, and sodium desoxycholate, the extracts are clarified. These detergents split the chlorophyll from the protein and the protein itself shows a sedimentation constant of 13.5 x 10–13 equivalent to a molecular weight of at least 265,000 as calculated from Stokes'' law. This probably represents the minimum size of the protein in native form. 4. Sodium dodecyl sulfate, a detergent which also clarifies the leaf extracts, shows a different behavior. The prosthetic group remains attached to the protein but the protein is split into smaller units. In 0.25 per cent SDS, S 20 is 2.6 x 10–13 over a pH range of 5 to 9, although at the acid pH chlorophyll is converted to phaeophytin. In 2.5 per cent SDS, S 20 is 1.7 x 10–13 suggesting a further splitting of the protein. 5. No differences in behavior were found for the various chloroplast pigments.  相似文献   

15.
The diffusion coefficient of crystalline trypsin in 0.5 saturated magnesium sulfate at 5°C. is 0.020 ±0.001 cm.2 per day, corresponding to a molecular radius of 2.6 x 10–7 cm. The rate of diffusion of the proteolytic activity is the same as that of the protein nitrogen, indicating that these two properties are held together in chemical combination and not in the form of an adsorption complex.  相似文献   

16.
In this study, we present a nonhazardous biological method of producing chitosan beads using the budding yeast Saccharomyces cerevisiae. Yeast cells cultured under conditions of nutritional starvation cease vegetative growth and instead form spores. The spore wall has a multilaminar structure with the chitosan layer as the second outermost layer. Thus, removal of the outermost dityrosine layer by disruption of the DIT1 gene, which is required for dityrosine synthesis, leads to exposure of the chitosan layer at the spore surface. In this way, spores can be made to resemble chitosan beads. Chitosan has adsorptive features and can be used to remove heavy metals and negatively charged molecules from solution. Consistent with this practical application, we find that spores are capable of adsorbing heavy metals such as Cu2+, Cr3+, and Cd2+, and removal of the dityrosine layer further improves the adsorption. Removal of the chitosan layer decreases the adsorption, indicating that chitosan works as an adsorbent in the spores. Besides heavy metals, spores can also adsorb a negatively charged cholesterol derivative, taurocholic acid. Furthermore, chitosan is amenable to chemical modifications, and, consistent with this property, dit1Δ spores can serve as a carrier for immobilization of enzymes. Given that yeast spores are a natural product, our results demonstrate that they, and especially dit1Δ mutants, can be used as chitosan beads and used for multiple purposes.  相似文献   

17.
A method is described which permits quantitative study of translational diffusion in the membranes of single cells. Human erythrocytes were labelled with fluorescein isothiocyanate and then hemolyzed, which yielded ghosts of normal shape and strong fluorescence. By application of sodium dodecylsulfatepolyacrylamide gel electrophoresis it was found that a very large part of fluorescein isothiocyanate was bound to the proteins of the erythrocyte membrane. In a fluorescence microscope, single ghosts were exposed to a sharply bounded intensive beam of light in such a manner that in each case only one half of the ghost was bleached. By microscopic measurements it was studied whether fluorescent material would diffuse from the unbleached part of the membrane into the bleached part and vice versa. However, within the measuring time of 20 min at room temperature a significant degree of such a diffusion could not be detected. In order to evaluate the experimental data quantitatively, the diffusion equation for a spherical surface was solved, and the obtained solution furthermore was integrated over the hemispheres. By these means a value of 3 · 10−12 cm2/s was derived from the experimental data as an upper limit for the diffusion coefficient of fluorescein isothiocyanate-labelled compounds in the erythrocyte membrane at 20°–23°C.  相似文献   

18.
The Effect of the Unstirred Layer on Human Red Cell Water Permeability   总被引:15,自引:11,他引:4  
A study has been made of water entry into human red blood cells under an osmotic pressure gradient. The measurements were made using a rapid reaction stop flow apparatus, whose construction, calibration, and performance are described in detail. Red cell volume changes were determined from 90° scattered light. The permeability coefficient for water entry under a relative isosmolar concentration of 1 to 1.5 was found to be 0.22 ± 0.01 cm4/sec osmol, which agrees well with our previously published value. The experiments were also designed to measure the thickness of the unstirred layer around the6 red cells. This was found to be 5.5 ± 0.8 µ under the present experimental conditions. It is concluded that our previously measured permeability coefficient for water entrance under a diffusion gradient does not require correction on account of the unstirred layer.  相似文献   

19.
In this paper we try to answer the question whether diffusion is a possible mechanism to explain mesoderm induction in Amphibians. First the embryological data are discussed and a hypothesis for mesoderm formation is set forth. The blastula being essentially a hollow sphere, we assume that the induction mechanism in an embryo at the blastula stage can be simulated by diffusion-reaction processes on spherical surfaces. A model is constructed for the simple case when the source is held constant with respect to time, the decay proportional to the concentration and the diffusion coefficient a constant, From simulation we find a (best) value for the decay constant to be 6 × 10–5/sec and for the diffusion constant to be 0.24 × 10– 6 cm2/sec. The relation between the parameters is derived from an analytic solution for the diffusion process on a spherical surface with a continuously producing point source and the concentration proportional to the decay. The form and regulative properties of the steady concentration gradient are discussed.  相似文献   

20.
Celecoxib is a cyclooxygenase-2 specific inhibitor, that has been recently and intensively prescribed as an anti-inflammatory drug in rheumatic osteoarthiritis. A robust, highly reliable and reproducible liquid chromatographic–mass spectrometric assay is developed for the determination of celecoxib in human plasma using sulindac as an internal standard. The run cycle-time is <4 min. The assay method involved extraction of the analytes from plasma samples at pH 5 with ethyl acetate and evaporation of the organic layer. The reconstituted solution of the residue was injected onto a Shim Pack GLC-CN, C18 column and chromatographed with a mobile phase comprised of acetonitrile–1% acetic acid solution (4:1) at a flow-rate of 1 ml/min. The mass spectrometer (LCQ Finnigan Mat) was programmed in the positive single-ion monitoring mode to permit the detection and quantitation of the molecular ions of celecoxib and sulindac at m/z 382 and 357, respectively. The peak area ratio of celecoxib/sulindac and concentration are linear (r2>0.994) over the concentration range 50–1000 ng/ml with a lowest detection limit of 20 ng/ml of celecoxib. Within- and between-day precision are within 1.58–4.0% relative standard deviation and the accuracy is 99.4–107.3% deviation of the nominal concentrations. The relative recoveries of celecoxib from human plasma ranged from 102.4 to 103.3% indicating the suitability of the method for the extraction of celecoxib and I.S. from plasma samples. The validated LC–MS method has been utilized to establish various pharmacokinetic parameters of celecoxib following a single oral dose administration of celecoxib capsules in two selected volunteers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号