首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vitro competition binding experiments with the selective muscarinic antagonists AF-DX 116 and pirenzepine (PZ) vs 3H-N-methylscopolamine as radioligand revealed a characteristic distribution of muscarinic receptor subtypes in different regions of rat brain. Based on non linear least squares analysis, the binding data were compatible with the presence of three different subtypes: the M1 receptor (high affinity for PZ), the cardiac M2 receptor (high affinity for AF-DX 116) and the glandular M2 receptor (low affinity for PZ and AF-DX 116). The highest proportion of M1 receptors was found in the hippocampus, whilst the cerebellum and the hypothalamus were the regions with the largest fraction of the cardiac M2 and glandular M2 receptors, respectively. In certain brain areas, depending on the relative proportions of the subtypes, flat binding curves were seen for AF-DX 116 and PZ. Based on these data, an approximate distribution pattern of the subtypes in the various brain regions is presented.  相似文献   

2.
The basal rate of water reabsorption and its acceleration by oxytocin, cyclic AMP (cAMP) or serosal hypertonicity in frog urinary bladders were monitored before and after exposure of the mucosal surface to sulfhydryl (SH) reactive reagents. The following observations were made: 1. N-ethylmaleimide (NEM, 10(-5)M) did not modify the basal water flux, but did potentiate the hydrosmotic response to oxytocin. At higher NEM concentrations, an increase in the basal flux was observed, while the oxytocin-induced water flux was strongly inhibited, if not, nullified. 2. Iodoacetamide (IAM, 10(-3)M) did not modify the basal water flux but did inhibit the oxytocin-, cAMP-, and serosal hypertonicity-induced increase in water permeability. Furthermore, the time course of the hydrosmotic response to oxytocin was significantly increased. 3. 5,5' dithio-bis-(2-nitrobenzoic acid) (DTNB, 10(-3)M) modified neither the basal nor the oxytocin-induced water flux when incubated at pH 8.1, but potentiated the inhibitory effect of NEM. However, at a mucosal pH of 6.5, DTNB inhibited the response to oxytocin by 30%. These results suggest that: (1) the three SH reagents affect differently the basal and the oxytocin-induced water pathways; and that (2) each of the changes in the oxytocin-induced paths occurs at a step following the hormonally-induced increase in intracellular cAMP concentration.  相似文献   

3.
Binding specificity in lactose permease toward galactopyranosides is governed by H-bonding interactions at C-2, C-3, C-4, and C-6 OH groups, while binding affinity can be increased dramatically by nonspecific hydrophobic interactions with the non-galactosyl moiety [Sahin-Tóth, M., Akhoon, K. M., Runner, J., and Kaback, H. R. (2000) Biochemistry 39, 5097-5103]. To characterize the contribution of individual hydroxyls, binding of structural analogues of p-nitrophenyl alpha-D-galactopyranoside (NPG) was examined by site-directed N-[(14)C]ethylmaleimide (NEM) labeling of the substrate-protectable Cys148 in the binding site. NPG blocks NEM alkylation of Cys148 with an apparent affinity of approximately 14 microM. A deoxy derivative at position C-2 binds with 25-fold lower affinity (K(D) 0.35 mM), and the deoxy analogue at C-3 exhibits ca. 70-fold decreased binding (K(D) 1 mM), while binding of 6-deoxy-NPG is at least 130-fold diminished (K(D) 1.9 mM). Remarkably, the C-4 deoxy derivative of NPG binds with almost 1500-fold reduced affinity (K(D) approximately 20 mM). No significant substrate protection is afforded by NPG analogues with methoxy (CH(3)-O-) substitutions at positions C-3, C-4, and C-6. In contrast, the C-2 methoxy analogue binds almost normally (K(D) 26 microM). The results confirm and extend the observations that the C-2, C-3, C-4, and C-6 OH groups of galactopyranosides participate in important H-bonding interactions. Moreover, the C-4 hydroxyl is identified as the major determinant of ligand binding, suggesting that sugar recognition in lactose permease may have evolved to discriminate primarily between gluco- and galactopyranosides.  相似文献   

4.
Escherichia coli mannitol specific EII in membrane vesicles can be inhibited by the action of the oxidizable substrate-reduced phenazine methosulfate (PMS) in a manner similar to E. coli enzyme IIGlc [Robillard, G. T., & Konings, W. (1981) Biochemistry 20, 5025-5032]. The fact that reduced PMS and various oxidizing agents protect the enzyme from inactivation by the sulfhydryl reagents N-ethylmaleimide and bromopyruvate suggests that the active form possesses a dithiol which can be protected by conversion to a disulfide. The sulfhydryl-disulfide distribution has been examined in purified EIImtl by labeling studies with N-[1-14C]ethylmaleimide ( [14C]NEM). EIImtl can be alkylated at three positions per peptide chain. When alkylation takes place in 8 M urea, only two positions are labeled. The third position becomes labeled in urea only after treatment with DTT, suggesting that the native enzyme is composed of two subunits linked by a disulfide bridge. The remaining two sulfhydryl groups per peptide chain appear to undergo changes in oxidation state as indicated by the following results. (1) Treatment of the active enzyme with NEM leads to complete inactivation and incorporation of 1 mol of [14C]NEM per peptide chain. Oxidizing agents protect the activity and prevent labeling presumably by forming a disulfide. (2) Phosphorylating the enzyme (one phosphoryl group per peptide chain) fully protects the activity, but 1 mol of NEM per peptide chain is still incorporated. Subsequent dephosphorylation by adding mannitol causes a second mole of [14C]NEM to be incorporated and results in complete inactivation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
A series of muscarinic agonists, straight chained, branched, cyclic alkyl and aromatic derivatives of the oxime 1 (demox) was designed with the aim of investigating their activity on muscarinic receptor subtypes. Effects on M1 receptor were assessed functionally by a microphysiometer apparatus, while M2, M3, and M4 receptor potency and affinity were studied on isolated preparations of guinea pig heart, ileum, and lung, respectively. The results suggest that the substitution of a hydrogen with a long side-chain or bulky group generally induces a decrease in potency at M1 and M3 subtypes, while a general increase in this parameter is obtained at M2 subtype. Among the agonists 2-18, compound 4 behaves as a full agonist with a preference for M3 subtype. Moreover, compound 12 is inactive at M1 and M4 receptors while it displays a full agonist activity at M2 and M3 subtypes. Since demox displays a variable response on cardiac M2 receptors regulating heart force, an in-depth inquiry of the functional behaviour of this compound was carried out at M2 receptors. In presence of 10(-11) and 10(-10) M demox, the binding of [3H]-NMS was increased by approximately 30% as a consequence of an increase of the association of [3H]-NMS to membranes; this effect was not observed in presence of a higher concentration of [3H]-NMS. Higher concentrations of demox decreased the binding of [3H]-NMS to heart atrial membranes but significantly retarded the dissociation of this radioligand. Our results suggest that demox may interact with orthosteric and allosteric sites of atrial M2 muscarinic receptor.  相似文献   

6.
N-Ethylmaleimide (NEM) decreases opiate agonist binding presumably by blocking crucial sulfhydryl (SH) groups at receptor binding sites. At physiological pH, NEM decreased GTP and manganese regulation but increased sodium effects on [3H]D-Ala2-Met5-enkephalinamide (D-Ala enk) binding to rat brain membranes. To determine the apparent pK values of putative SH groups in opiate receptors that react with NEM, rat brain membranes were incubated with 100-250 microM NEM in buffers ranging from pH 4.5 to 8.0. Results showed that lowering pH below 6.5 reduced the NEM effect on opiate receptor functions and that the apparent pK values of NEM-reacting SH groups in binding and regulatory sites ranged between 5.4 to 6.0. Most of the total SH groups in brain membranes continued to react with NEM at low pH, so that when nonspecific SH groups were blocked by incubating membranes at pH 4.5 with NEM, opiate receptors became sensitive to very low concentrations (1 microM) of NEM.  相似文献   

7.
All of the δ, μ, and κ opioid receptors have a free thiol group of the Cys residue in the ligand-binding site, although its functional role is not yet known. In order to examine whether or not a similar Cys is also present in the ORL1 nociceptin receptor, we attempted to identify it by affinity labeling using a specific antagonist peptide. We first treated ORL1-expressing COS-7 cell membrane preparations with the thiol-alkylation reagent N-ethylmaleimide (NEM) to perform a binding assay using [3H]nociceptin as a tracer and nociceptin, an ORL1 agonist, or Ac-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2, a nociceptin/ORL1 antagonist, as a competitor. It was suggested that ORL1 has a free Cys in its ligand-binding site, since the NEM treatment reduced the population of ligand-binding sites. This was further confirmed by affinity labeling using Cys(Npys)-Arg-Tyr-Tyr-Arg-Ile-Lys-NH2 with the SNpys group that can react with a free thiol group, resulting in the formation of a disulfide bond. This affinity labeling was approximately 23 times more specific than NEM alkylation. The results revealed that the ORL1 nociceptin receptor does contain a free Cys residue in the ligand-binding site.  相似文献   

8.
Although prior studies have supported the validity of measuring total muscarinic receptor binding in postmortem brain, there has not been a study of postmortem effects on muscarinic receptor subtypes, M1 and M2, defined by high and low affinity for pirenzepine, respectively. We have examined in rat brain the effect of postmortem delay at room temperature, storage at 4 degrees C and -20 degrees C, and multiple freeze/thaw cycles on total muscarinic binding, measured with [3H]quinuclidinylbenzilate ([3H]QNB) and on M1 muscarinic binding, measured with [3H]pirenzepine ([3H]Pir). We found that delay at room temperature up to 4 h, or storage at 4 degrees C for 24 h or at -20 degrees C for 4 weeks, or 3 freeze/thaw cycles had no effect on [3H]QNB or [3H]Pir binding. Exposure of brain to room temperature for 15 h, however, led to an increase in [3H]QNB binding, without change in [3H]Pir. Scatchard analysis showed an increase in binding sites without a change in affinity. We conclude that [3H]QNB and [3H]Pir are valid measures of total and M1 muscarinic binding, respectively, under these circumstances, but that caution must be used in the interpretation of indirect measures of M2 binding.  相似文献   

9.
Oxidation of the skeletal muscle Ca(2+) release channel (RYR1) increases its activity, produces intersubunit disulfide bonds, and blocks its interaction with calmodulin. Conversely, bound calmodulin protects RYR1 from the effects of oxidants (Zhang, J.-Z., Wu, Y., Williams, B. Y., Rodney, G., Mandel, F., Strasburg, G. M., and Hamilton, S. L. (1999) Am. J. Physiol. 276, Cell Physiol. C46-C53). In addition, calmodulin protects RYR1 from trypsin cleavage at amino acids 3630 and 3637 (Moore, C. P., Rodney, G., Zhang, J.-Z., Santacruz-Toloza, L., Strasburg, G. M., and Hamilton, S. L. (1999) Biochemistry 38, 8532-8537). The sequence between these two tryptic sites is AVVACFR. Alkylation of RYR1 with N-ethylmaleimide (NEM) blocks both (35)S-apocalmodulin binding and oxidation-induced intersubunit cross-linking. In the current work, we demonstrate that both cysteines needed for the oxidation-induced intersubunit cross-link are protected from alkylation with N-ethylmaleimide by bound calmodulin. We also show, using N-terminal amino acid sequencing together with analysis of the distribution of [(3)H]NEM labeling with each sequencing cycle, that cysteine 3635 of RYR1 is rapidly labeled by NEM and that this labeling is blocked by bound calmodulin. We propose that cysteine 3635 is located at an intersubunit contact site that is close to or within a calmodulin binding site. These findings suggest that calmodulin and oxidation modulate RYR1 activity by regulating intersubunit interactions in a mutually exclusive manner and that these interactions involve cysteine 3635.  相似文献   

10.
Pig heart NADP-dependent isocitrate dehydrogenase is 65% inactivated by 3-bromo-2-ketoglutarate (Ehrlich, R.S., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,614-12,619) and 90% inactivated by 2-(4-bromo-2,3-dioxobutylthio)-1,N6- ethenoadenosine 2',5'-bisphosphate (2-BDB-T epsilon A-2',5'-DP) (Bailey, J.M., and Colman, R.F., 1987, J. Biol. Chem. 262, 12,620-12,626). Both inactivation reactions result in enzyme with an incorporation of 1.0 mol reagent/mol enzyme dimer and both modified enzymes bind only 1.0 mol manganous isocitrate or NADPH/mol enzyme dimer as compared to 2.0 mol manganous isocitrate or NADPH/mol enzyme dimer for unmodified enzyme. The inactivation reactions, which occur at or near the nucleotide binding site, are mutually exclusive. Reaction with either affinity reagent led to the isolation of the same modified triskaidekapeptide, DLAGXIHGLSNVK. We have isolated from isocitrate dehydrogenase a peptide, DLAGCIHGLSNVK, that had been modified by N-ethylmaleimide (NEM) with no loss of enzymatic activity. We now show that enzyme modified by NEM in the presence of isocitrate plus Mn2+ retains full catalytic activity but is not inactivated by either of the affinity reagents; thus, all three reagents appear to react at the same site. The analysis of HPLC tryptic maps of isocitrate dehydrogenase treated under denaturing conditions with iodo[3H]acetic acid or [3H]NEM demonstrates that both bromoketoglutarate and 2-BDB-T epsilon A-2',5'-DP react with the cysteine residue of DLAGCIHGLSNVK. We conclude that the cysteine of this triskaidekapeptide is close to the coenzyme binding site but is not essential for catalytic function.  相似文献   

11.
The beta-adrenergic receptor of C6 glioma cells contains a disulfide bridge which can be reduced by dithiothreitol (DTT). On intact cells, N-ethylmaleimide (NEM) (5 mM) does not change the affinity of [3H] H2-alprenolol ([3H] DHA) but reduces the total number of beta-adrenergic cell receptors by 21 +/- 3 per cent ; (N = 3). After receptor reduction by DTT, NEM irreversibly blocks the accessibility of the beta-adrenergic receptors to [3H]DHA. On isolated membranes, incubation in the presence of either NEM (5 mM) or isoproterenol (5.10(-7) M) does not significantly modify the total number of beta-adrenergic receptors accessible to [3H]DHA. Incubation of membranes with both NEM and isoproterenol reduces the number of binding sites by 33 +/- 2 per cent ; (N = 3). A thiol derivative of propranolol was synthetized. Its affinity is 10 times lower than that of propranolol. This sulfur derivative reduces the total number of beta-adrenergic receptors by 22 +/- 3 per cent (N = 3) when incubated with the native receptor and by 55 +/- 4 per cent (N = 4) when incubated with the reduced receptor. DTT does not significantly reverse the blockade induced by propranolol-SH. A model is proposed for explaining these results.  相似文献   

12.
Renuka TR  Ani DV  Paulose CS 《Life sciences》2004,75(19):2269-2280
Muscarinic M1 and M3 receptor changes in the brain stem during pancreatic regeneration were investigated. Brain stem acetylcholine esterase activity decreased at the time of regeneration. Sympathetic activity also decreased as indicated by the norepinephrine (NE) and epinephrine (EPI) content of adrenals and also in the plasma. Muscarinic M1 and M3 receptors showed reciprocal changes in the brain stem during regeneration. Muscarinic M1 receptor number decreased at time of regeneration without any change in the affinity. High affinity M3 receptors showed an increase in the number. The affinity did not show any change. The number of low affinity receptors decreased with decreased Kd at 72 hours after partial pancreatectomy. The Kd reversed to control value with a reversal of the number of receptors to near control value. Gene expression studies also showed a similar change in the mRNA level of M1 and M3 receptors. These alterations in the muscarinic receptors regulate sympathetic activity and maintain glucose level during pancreatic regeneration. Central muscarinic M1 and M3 receptor subtypes functional balance is suggested to regulate sympathetic and parasympathetic activity, which in turn control the islet cell proliferation and glucose homeostasis.  相似文献   

13.
We have characterized the in vitro properties of 3-[3H]methoxy-5-(pyridin-2-ylethynyl)pyridine ([3H]MethoxyPyEP), an analogue of the mGluR(5) receptor subtype antagonist MPEP [2-methyl-6-(phenylethynyl)-pyridine], in rat tissue preparations using tissue homogenates and autoradiography. Binding of [3H]MethoxyPyEP to rat cortex, hippocampus, thalamus and cerebellum membrane preparations revealed saturable, high affinity binding (3.4 +/- 0.4 nM, n = 4 in rat cortex) to a single population of receptors in all regions studied except for cerebellum. Binding was found to be relatively insensitive to pH and insensitive to DTT. High concentrations of NEM both reduce receptor concentration and binding affinity for the radioligand. In time-course studies at room temperature k(on) and k(off) were determined as 2.9 x 10(7) M(-1) min(-1) and 0.11 min(-1) respectively. The rank order of affinities, as assessed by equilibrium competition studies, of a variety of ligands suggested binding of the radioligand selectively to mGluR5 (MPEP > trans-azetidine-2,4-dicarboxylic acid congruent with (S)-4-carboxyphenylglycine congruent with (+)MK801 congruent with CP-101,606 congruent with clozapine congruent with atropine congruent with ketanserin congruent with yohimbine congruent with benoxathian). Autoradiographic studies with [3H]MethoxyPyEP showed that binding was regioselective, with high density of binding in caudate and hippocampus, intermediate binding in thalamus and very low density in the cerebellum. These data show that [3H]MethoxyPyEP is a high affinity radioligand useful for the in vitro study of mGluR5 receptor distribution and pharmacologic properties in brain.  相似文献   

14.
The single-channel blocking kinetics of tetrodotoxin (TTX), saxitoxin (STX), and several STX derivatives were measured for various Na-channel subtypes incorporated into planar lipid bilayers in the presence of batrachotoxin. The subtypes studied include Na channels from rat skeletal muscle and rat brain, which have high affinity for TTX/STX, and Na channels from denervated rat skeletal muscle and canine heart, which have about 20-60-fold lower affinity for these toxins at 22 degrees C. The equilibrium dissociation constant of toxin binding is an exponential function of voltage (e-fold per 40 mV) in the range of -60 to +60 mV. This voltage dependence is similar for all channel subtypes and toxins, indicating that this property is a conserved feature of channel function for batrachotoxin-activated channels. The decrease in binding affinity for TTX and STX in low-affinity subtypes is due to a 3-9-fold decrease in the association rate constant and a 4-8-fold increase in the dissociation rate constant. For a series of STX derivatives, the association rate constant for toxin binding is approximately an exponential function of net toxin charge in membranes of neutral lipids, implying that there is a negative surface potential due to fixed negative charges in the vicinity of the toxin receptor. The magnitude of this surface potential (-35 to -43 mV at 0.2 M NaCl) is similar for both high- and low-affinity subtypes, suggesting that the lower association rate of toxin binding to toxin-insensitive subtypes is not due to decreased surface charge but rather to a slower protein conformational step. The increased rates of toxin dissociation from insensitive subtypes can be attributed to the loss of a few specific bonding interactions in the binding site such as loss of a hydrogen bond with the N-1 hydroxyl group of neosaxitoxin, which contributes about 1 kcal/mol of intrinsic binding energy.  相似文献   

15.
Binding protein for N-1-naphthylphthalamic acid (NPA), an auxin transport inhibitor, was studied by analysis of the effects of reactions which modify particular amino acid side chains upon their binding activity. Na2SO3, N-ethylmaleimide (NEM) and dithiobisnitrobenzoic acid all inhibited the specific binding of NPA to its binding protein fromAcer pseudoplatanus L. cells. The presence of 10-6 M Na2SO3 in the binding assay reduced the affinity of the binding protein to NPA from Kd of 1.5 £ 10-8 M to Kd of 2.1 £ 10-8 M, while concentration of the binding protein was not significantly changed. When the same analysis was applied to NPA binding to the NEM-treated membrane particles, it was found that NEM inactivated binding without changing the affinity for NPA. This study revealed the importance of sulphydryl group(s) in the maintenance of NPA binding protein activity.  相似文献   

16.
R Haring  Y Kloog  A Kalir  M Sokolovsky 《Biochemistry》1987,26(18):5854-5861
Binding and photoaffinity labeling experiments were employed in order to differentiate 1-(1-phenylcyclohexyl)piperidine (PCP) receptor sites in rat brain. Two classes of PCP receptors were characterized and localized: one class binds [3H]-N-[1-(2-thienyl)cyclohexyl]piperidine [( 3H]TCP) with high affinity (Kd = 10-15 nM) and the other binds the ligand with a relatively low affinity (Kd = 80-100 nM). The two classes of sites have different patterns of distribution. Forebrain regions are characterized by high-affinity sites (hippocampus greater than frontal cortex greater than thalamus greater than olfactory bulb greater than hypothalamus), but some parts (e.g., hippocampus, hypothalamus) contain low-affinity sites as well. In the cerebellum only low-affinity sites were detected. Binding sites for [3H]PCP and for its photolabile analogue [3H]azido-PCP showed a regional distribution similar to that of the [3H]TCP sites. The neuroleptic drug haloperidol did not block binding to either the high- or the low-affinity [3H]TCP sites, whereas Ca2+ inhibited binding to both. Photoaffinity labeling of the PCP receptors with [3H]AZ-PCP indicated that five specifically labeled polypeptides of these receptors (Mr 90,000, 62,000, 49,000, 40,000, and 33,000) are unevenly distributed in the rat brain. Two of the stereoselectively labeled polypeptides (Mr 90,000 and 33,000) appear to be associated with the high- and low-affinity [3H]TCP-binding sites; the density of the Mr 90,000 polypeptide in various brain regions correlates well with the localization of the high-affinity sites, whereas the density of the Mr 33,000 polypeptide correlates best with the distribution of the low-affinity sites.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Pirenzepine (2) is one of the most selective muscarinic M(1) versus M(2) receptor antagonists known. A series of 2 analogs, in which the piperazyl moiety was replaced by a cis- and trans-cyclohexane-1,2-diamine (3-6) or a trans- and cis-perhydroquinoxaline rings (7 and 8) were prepared, with the aim to investigate the role of the piperazine ring of 2 in the interaction with the muscarinic receptors. The structural change leading to compounds 3-6 abolished in binding assays the muscarinic M(1)/M(2) selectivity of 2, due to an increased M(2) affinity. Rather, compounds 3-6 displayed a reversed selectivity showing more affinity at the muscarinic M(2) receptor than at all the other subtypes tested.  相似文献   

18.
We previously demonstrated that brucine and some analogues allosterically enhance the affinity of ACh at muscarinic receptor subtypes M1, M3 or M4. Here we describe allosteric effects at human M1-M4 receptors of four stereoisomers of a pentacyclic structure containing features of the ring structure of brucine. All compounds inhibited 3H-NMS dissociation almost completely at all subtypes with slopes of 1, with similar affinity values at the 3H-NMS-occupied receptor to those estimated from equilibrium assays, consistent with the ternary complex allosteric model. Compound 1a showed positive cooperativity with H-NMS and small negative or neutral cooperativity with ACh at all subtypes. Its stereoisomer, 1b, showed strong negative cooperativity with both 3H-NMS and ACh across the subtypes. Compound 2a was positive with 3H-NMS at M2 and M4 receptors, neutral at M3 and negative at M1 receptors; it was negatively cooperative with ACh at all subtypes. Its stereoisomer, 2b, was neutral with 3H-NMS at M1 receptors and positive at the other subtypes; 2b was negatively cooperative with ACh at M1, M3 and M4 receptors but showed 3-fold positive cooperativity with ACh at M2 receptors. This latter result was confirmed with further 3H-NMS and 3H-ACh radioligand binding assays and with functional assays of ACh-stimulated 35S-GTPgammaS binding. These results provide the first well characterised instance of a positive enhancer of ACh at M2 receptors, and illustrate the difficulty of predicting such an effect.  相似文献   

19.
Myosin has 2 mol of the most reactive thiol, named SH1. 1,2,4-Trinitrobenzene (TNB), a novel dinitrophenyl(DNP)ating reagent [Takahashi et al. (1983) Chem. Lett. 1445-1448], was found to react only with SH1 without any other amino acid residues in myosin under the conditions used. Its reaction with myosin SH1 was about 30 times faster than that with N-acetylcysteine (NAC). The reaction rate of TNB with SH1 was about twice compared with that of NEM, the most reactive selective reagent for SH1 so far found, although its rate with NAC was only one sixtieth that of NEM. As to the lambda max of the absorption spectrum of SH1-DNP-myosin, a large red shift of as much as 20 nm was observed compared with low molecular S-DNP derivatives. This red shift disappeared in 8 M urea. This outstanding feature of SH1 modification with TNB was discussed in terms of affinity labeling by interaction with an aromatic amino acid near SH1.  相似文献   

20.
Abstract: Heterogeneity of binding affinities for a variety of ligands was observed for γ-aminobutyric acid type A (GABAA) receptors in the rat CNS, at both GABA and ben-zodiazepine recognition sites. Photoaffinity labeling by [3H]flunitrazepam and [3H]muscimol to affinity column-purified receptor proteins was examined by gel electropho-resis in sodium dodecyl sulfate. Anesthetic barbiturates (pentobarbital) and steroids (alphaxalone) both differentially stimulated the incorporation of [3H]flunitrazepam more so into the 51-kDa α1 subunit than into the 53-kDa aL2 polypeptide, and incorporation of [3H]muscimol into the 55-kDa β2 subunit more so than the 58-kDaβ3 polypeptide. Binding to these polypeptides was also affected differentially by other allosteric modulators and competitive inhibitors, including the benzodiazepine “type 1” selective ligand CL218.872. Heterogeneity in affinity of this drug for the single 51-kDa α1 polypeptide strongly suggests that type I receptors, like type II, are heterogeneous. In brain sections, the extent of enhancement of [3H]muscimol binding showed significant regional variation, similar for both steroids and barbiturates, and the GABA analogues THlP and taurine inhibited muscimol binding with regional variations in affinity that were almost opposites of each other. Modulation of [3H]flunitrazepam binding by steroids, barbiturates, and THlP significantly varied with regions. Taken together, ligand binding heterogeneity exhibited by photoaffinity labeling and autoradiography demonstrate the existence of multiple pharmacological-binding subtypes resulting from the combination of multiple polypeptide gene products into several oligomeric isoreceptors. Comparison of the regional distribution of binding subtypes with that of different subunit gene products allows the following conclusions about possible subunit compositions of native pharmacological receptor subtypes present in the brain: Benzodiazepine pharmacology of the oligomeric receptor isofotms is dependent on the nature of α and subunits other than α, GABA-benzodiazepine coupling is dependent on the nature of the α subunits, GABA site pharmacology is dependent on the nature of the β sub-units, and several subunits including α and β contribute to the degree of sensitivity to steroids and barbiturates. Finally, the presence of discrete subunits may be necessary but is not sufficient to postulate a defined pharmacological property.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号