首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The level of ppGpp and rates of synthesis of stable RNA, ribosomal protein, and the beta and beta' subunits of RNA polymerase were measured following a nutritional shiftup in Escherichia coli strains, NF 929 (spoT+) and NF 930 (spoT-). In the spoT+ strain, ppGpp levels decreased 50% within 2 min following shiftup, and the rates of synthesis of stable RNA, ribosomal proteins, and the beta and beta' subunits of RNA polymerase increased with little or no lag. In contrast, in the spoT- strain, ppGpp levels transiently increased 40% during the first 6 min following shiftup. An inhibition in the rate of stable RNA synthesis and a delay in the increased synthesis of ribosomal proteins and beta and beta' subunits occurred concurrently with the transient increase in ppGpp. In addition, the DNA-dependent synthesis in vitro of the beta and beta' subunits of RNA polymerase was inhibited by physiological levels of ppGpp. Because of the timing and magnitude of the changes in ppGpp levels in the spoT- strain versus the timing when the new rates of stable RNA, ribosomal protein, and beta and beta' subunits synthesis are reached, it is concluded that ppGpp is not the sole element regulating the expression of these genes.  相似文献   

2.
The rpoC1 ts mutation affecting the RNA polymerase beta' subunit accelerates synthesis of RNA polymerase beta beta' subunits at 42 degrees C, while the surplus amount of subunits degrades in an hour's time. In a Ts strain with two RNA polymerase mutations, rpoC1 and rpoB251, we obtained a ts+ reversion designated opr24 which slows down degradation of surplus beta beta' subunits. The slowing down of degradation and the resulting accumulation of beta beta' subunits does not affect the kinetics of beta beta' subunit synthesis after the transfer to 42 degrees C. The effects of the opr24 are allele non-specific. The mutation also slows down degradation of beta' subunit and the amber fragment of beta subunit in the strain with subunit amber mutation rpoB22. Besides, the opr24 mutation reduces proteolysis of anomalous proteins containing canavanine. The opr24 mutation has been mapped between 17 and 21 minutes on the Escherichia coli map.  相似文献   

3.
4.
The effect of low chloramphenicol concentrations on the biosynthesis of RNA, ribosomal proteins and RNA polymerase in E. coli CP 78 cells was studied. When protein synthesis was decreased by 50--70%, 14C-uracil incorporation in DNA increased twice, the rRNA synthesis being stimulated preferentially. In the presence of antibiotic the RNA/DNA ratio increased from 5,7 to 13,3. The differential rate of r-protein synthesis increased simultaneously with the stimulation of rRNA synthesis, so that alphar rises from 0,083 (without antibiotic) to 0,122 and 0,161 at 5 and 10 microgram/ml of chloramphenicol, respectively. The inhibition of protein synthesis by chloramphenicol is accompanied also by the increase of differential rate of synthesis of beta and beta' subunits of RNA polymerase. In the presence of 5 and 10 microgram/ml of chloramphenicol, alphap increased from 0,90% to 1,44 and 1,57%, respectively. It is assumed that the genes for beta and beta' subunits of RNA polymerase as the ribosomal genes are negatively controlled by guanosine tetraphosphate which intracellular concentration decreased in the presence of chloramphenicol. The known data on the influence of streptolydigin and rifampicin on the RNA polymerase biosynthesis are discussed in view of proposed hypothesis.  相似文献   

5.
6.
7.
8.
9.
10.
The omega subunit of Escherichia coli RNA polymerase, consisting of 90 amino acids, is present in stoichiometric amounts per molecule of core RNA polymerase (alpha2betabeta'). The presence of omega is necessary to restore denatured RNA polymerase in vitro to its fully functional form, and, in an omega-less strain of E. coli, GroEL appears to substitute for omega in the maturation of RNA polymerase. The X-ray structure of Thermus aquaticus core RNA polymerase suggests that two regions of omega latch on to beta' at its N-terminus and C-terminus. We show here that omega binds only the intact beta' subunit and not the beta' N-terminal domain or beta' C-terminal domain, implying that omega binding requires both these regions of beta'. We further show that omega can prevent the aggregation of beta' during its renaturation in vitro and that a V8-protease-resistant 52-amino-acid-long N-terminal domain of omega is sufficient for binding and renaturation of beta'. CD and functional assays show that this N-terminal fragment retains the structure of native omega and is able to enhance the reconstitution of core RNA polymerase. Reconstitution of core RNA polymerase from its individual subunits proceeds according to the steps alpha + alpha --> alpha2 + beta --> alpha2beta + beta' --> alpha2betabeta'. It is shown here that omega participates during the last stage of enzyme assembly when beta' associates with the alpha2beta subassembly.  相似文献   

11.
R F Troxler  F Zhang  J Hu    L Bogorad 《Plant physiology》1994,104(2):753-759
Plastid genes are transcribed by DNA-dependent RNA polymerase(s), which have been incompletely characterized and have been examined in a limited number of species. Plastid genomes contain rpoA, rpoB, rpoC1, and rpoC2 coding for alpha, beta, beta', and beta" RNA polymerase subunits that are homologous to the alpha, beta, and beta' subunits that constitute the core moiety of RNA polymerase in bacteria. However, genes with homology to sigma subunits in bacteria have not been found in plastid genomes. An antibody directed against the principal sigma subunit of RNA polymerase from the cyanobacterium Anabaena sp. PCC 7120 was used to probe western blots of purified chloroplast RNA polymerase from maize, rice, Chlamydomonas reinhardtii, and Cyanidium caldarium. Chloroplast RNA polymerase from maize and rice contained an immunoreactive 64-kD protein. Chloroplast RNA polymerase from C. reinhardtii contained immunoreactive 100- and 82-kD proteins, and chloroplast RNA polymerase from C. caldarium contained an immunoreactive 32-kD protein. The elution profile of enzyme activity of both algal chloroplast RNA polymerases coeluted from DEAE with the respective immunoreactive proteins, indicating that they are components of the enzyme. These results provide immunological evidence for sigma-like factors in chloroplast RNA polymerase in higher plants and algae.  相似文献   

12.
Z Hillel  C W Wu 《Biochemistry》1977,16(15):3334-3342
The quaternary structures of Escherichia coli DNA-dependent RNA polymerase holenzyme (alpha 2 beta beta' sigma) and core enzyme (alpha 2 beta beta') have been investigated by chemical cross-linking with a cleavable bifunctional reagent, methyl 4-mercaptobutyrimidate, and noncleavable reagents, dimethyl suberimidate and N,N'-(1,4-phenylene)bismaleimide. A model of the subunit organization deduced from cross-linked subunit neighbors identified by dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the large beta and beta' subunits constitute the backbone of both core and holoenzyme, while sigma and two alpha subunits interact with this structure along the contact domain of beta and beta' subunits. In holoenzyme, sigma subunit is in the vicinity of at least one alpha subunit. The two alpha subunits are close to each other in holoenzyme, core enzyme, and the isolated alpha 2 beta complex. Cross-linking of the "premature" core and holoenzyme intermediates in the in vitro reconstitution of active enzyme from isolated subunits suggests that these species are composed of subunit complexes of molecular weight lower than that of native core and holoenzyme, respectively. The structural information obtained for RNA polymerase and its subcomplexes has important implications for the enzyme-promoter recognition as well as the mechanism of subunit assembly of the enzyme.  相似文献   

13.
14.
15.
16.
17.
18.
J N Engel  J Pollack  F Malik    D Ganem 《Journal of bacteriology》1990,172(10):5732-5741
Taking advantage of sequence conservation of portions of the alpha, beta, and beta' subunits of RNA polymerase of bacteria and plant chloroplasts, we have designed degenerate oligonucleotides corresponding to these domains and used these synthetic DNA sequences as primers in a polymerase chain reaction to amplify DNA sequences from the chlamydial genome. The polymerase chain reaction products were used as a probe to recover the genomic fragments encoding the beta subunit and the 5' portion of the beta' subunit from a library of cloned murine Chlamydia trachomatis DNA. Similar attempts to recover the alpha subunit were unsuccessful. Sequence analysis demonstrated that the beta subunit of RNA polymerase was located between genes encoding the L7/L12 ribosomal protein and the beta' subunit of RNA polymerase; this organization is reminiscent of the rpoBC operon of Escherichia coli. The C. trachomatis beta subunit overproduced in E. coli was used as an antigen in rabbits to make a polyclonal antibody to this subunit. Although this polyclonal antibody specifically immunoprecipitated the beta subunit from Chlamydia-infected cells, it did not immunoprecipitate core or holoenzyme. Immunoblots with this antibody demonstrated that the beta subunit appeared early in infection.  相似文献   

19.
20.
Antibodies against the isolated subunits alpha, beta, and beta' of DNA-dependent RNA polymerase from E. coli have been prepared. They have been used to compare the extent of antibody-binding, as measured by complement fixation, to the isolated subunits and to the intact enzyme, in the absence and presence of ligands, such as inhibitors, nucleotides, nucleosides, oligo- and poly-nucleotides, and DNA of different composition. In many cases the results show a subunit-specific dependence of complement fixation upon the presence of a ligand and suggest a functional topography of the interaction between the subunits alpha, beta, and beta' of RNA polymerase and defined nucleotide sequences and small ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号