首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Myosin 1b (Myo1b), a class I myosin, is a widely expressed, single-headed, actin-associated molecular motor. Transient kinetic and single-molecule studies indicate that it is kinetically slow and responds to tension. Localization and subcellular fractionation studies indicate that Myo1b associates with the plasma membrane and certain subcellular organelles such as endosomes and lysosomes. Whether Myo1b directly associates with membranes is unknown. We demonstrate here that full-length rat Myo1b binds specifically and with high affinity to phosphatidylinositol 4,5-bisphosphate (PIP2) and phosphatidylinositol 3,4,5-triphosphate (PIP3), two phosphoinositides that play important roles in cell signaling. Binding is not Ca2+-dependent and does not involve the calmodulin-binding IQ region in the neck domain of Myo1b. Furthermore, the binding site is contained entirely within the C-terminal tail region, which contains a putative pleckstrin homology domain. Single mutations in the putative pleckstrin homology domain abolish binding of the tail domain of Myo1b to PIP2 and PIP3 in vitro. These same mutations alter the distribution of Myc-tagged Myo1b at membrane protrusions in HeLa cells where PIP2 localizes. In addition, we found that motor activity is required for Myo1b localization in filopodia. These results suggest that binding of Myo1b to phosphoinositides plays an important role in vivo by regulating localization to actin-enriched membrane projections.  相似文献   

2.
In chemotaxing ameboid cells, a complex leading-edge signaling circuit forms on the cytoplasmic leaflet of the plasma membrane and directs both actin and membrane remodeling to propel the leading edge up an attractant gradient. This leading-edge circuit includes a putative amplification module in which Ca2+-protein kinase C (Ca2+-PKC) is hypothesized to phosphorylate myristoylated alanine-rich C kinase substrate (MARCKS) and release phosphatidylinositol-4,5-bisphosphate (PIP2), thereby stimulating production of the signaling lipid phosphatidylinositol-3,4,5-trisphosphate (PIP3) by the lipid kinase phosphoinositide-3-kinase (PI3K). We investigated this hypothesized Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3 amplification module and tested its key predictions using single-molecule fluorescence to measure the surface densities and activities of its protein components. Our findings demonstrate that together Ca2+-PKC and the PIP2-binding peptide of MARCKS modulate the level of free PIP2, which serves as both a docking target and substrate lipid for PI3K. In the off state of the amplification module, the MARCKS peptide sequesters PIP2 and thereby inhibits PI3K binding to the membrane. In the on state, Ca2+-PKC phosphorylation of the MARCKS peptide reverses the PIP2 sequestration, thereby releasing multiple PIP2 molecules that recruit multiple active PI3K molecules to the membrane surface. These findings 1) show that the Ca2+-PKC-MARCKS-PIP2-PI3K-PIP3 system functions as an activation module in vitro, 2) reveal the molecular mechanism of activation, 3) are consistent with available in vivo data, and 4) yield additional predictions that are testable in live cells. More broadly, the Ca2+-PKC-stimulated release of free PIP2 may well regulate the membrane association of other PIP2-binding proteins, and the findings illustrate the power of single-molecule analysis to elucidate key dynamic and mechanistic features of multiprotein signaling pathways on membrane surfaces.  相似文献   

3.
TRPV1 channels are an important class of membrane proteins that play an integral role in the regulation of intracellular cations such as calcium in many different tissue types. The anionic phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) is a known positive modulator of TRPV1 channels and the negatively charged phosphate groups interact with several basic amino acid residues in the proximal C-terminal TRP domain of the TRPV1 channel. We and other groups have shown that physiological sub-micromolar levels of long-chain acyl CoAs (LC-CoAs), another ubiquitous anionic lipid, can also act as positive modulators of ion channels and exchangers. Therefore, we investigated whether TRPV1 channel activity is similarly regulated by LC-CoAs. Our results show that LC-CoAs are potent activators of the TRPV1 channel and interact with the same PIP2-binding residues in TRPV1. In contrast to PIP2, LC-CoA modulation of TRPV1 is independent of Ca2+ i, acting in an acyl side-chain saturation and chain-length dependent manner. Elevation of LC-CoAs in intact Jurkat T-cells leads to significant increases in agonist-induced Ca2+ i levels. Our novel findings indicate that LC-CoAs represent a new fundamental mechanism for regulation of TRPV1 channel activity that may play a role in diverse cell types under physiological and pathophysiological conditions that alter fatty acid transport and metabolism such as obesity and diabetes.  相似文献   

4.
The seemly paradoxical Gq agonist-stimulated phosphoinositide production has long been known, but the underlying mechanism and its physiological significance are not known. In this study, we studied cardiac phosphoinositide levels in both cells and whole animals under the stimulation of norepinephrine (NE), angiotensin II (Ang II), and other physiologically relevant interventions. The results demonstrated that activation of membrane receptors related to NE or Ang II caused an initial increase and a later fall in phosphatidylinositol 4,5-bisphosphate (PIP2) levels in the primary cultured cardiomyocytes from adult rats. The possible mechanism underlying this increase in PIP2 was found to be through an enhanced activity of phosphatidylinositol 4-kinase IIIβ, which was mediated by an up-regulated interaction between phosphatidylinositol 4-kinase IIIβ and PKC; the increased activity of phosphatidylinositol 4-phosphate 5-kinase γ was also involved for NE-induced increase of PIP2. When the systolic functions of the NE/Ang II-treated cells were measured, a maintained or failed contractility was found to be correlated with a rise or fall in corresponding PIP2 levels. In two animal models of cardiac hypertrophy, PIP2 levels were significantly reduced in hypertrophic hearts induced by isoprenaline but not in those induced by swimming exercise. This study describes a novel mechanism for phosphoinositide metabolism and modulation of cardiac function.  相似文献   

5.
Phosphatidylinositol-4,5-bisphosphate (PIP2), which constitutes ∼1% of the plasma membrane phospholipid, plays a key role in membrane-delimited signaling. PIP2 regulates structurally and functionally diverse membrane proteins, including voltage- and ligand-gated ion channels, inwardly rectifying ion channels, transporters, and receptors. In some cases, the regulation is known to involve specific lipid–protein interactions, but the mechanisms by which PIP2 regulates many of its various targets remain to be fully elucidated. Because many PIP2 targets are membrane-spanning proteins, we explored whether the phosphoinositides might alter bilayer physical properties such as curvature and elasticity, which would alter the equilibrium between membrane protein conformational states—and thereby protein function. Taking advantage of the gramicidin A (gA) channels’ sensitivity to changes in lipid bilayer properties, we used gA-based fluorescence quenching and single-channel assays to examine the effects of long-chain PIP2s (brain PIP2, which is predominantly 1-stearyl-2-arachidonyl-PIP2, and dioleoyl-PIP2) on bilayer properties. When premixed with dioleoyl-phosphocholine at 2 mol %, both long-chain PIP2s produced similar changes in gA channel function (bilayer properties); when applied through the aqueous solution, however, brain PIP2 was a more potent modifier than dioleoyl-PIP2. Given the widespread use of short-chain dioctanoyl-phosphoinositides, we also examined the effects of diC8-phosphoinositol (PI), PI(4,5)P2, PI(3,5)P2, PI(3,4)P2, and PI(3,4,5)P3. The diC8 phosphoinositides, except for PI(3,5)P2, altered bilayer properties with potencies that decreased with increasing head group charge. Nonphosphoinositide diC8 phospholipids generally were more potent bilayer modifiers than the polyphosphoinositides. These results show that physiological increases or decreases in plasma membrane PIP2 levels, as a result of activation of PI kinases or phosphatases, are likely to alter lipid bilayer properties, in addition to any other effects they may have. The results further show that exogenous PIP2, as well as structural analogues that differ in acyl chain length or phosphorylation state, alters lipid bilayer properties at the concentrations used in many cell physiological experiments.  相似文献   

6.
In isolated synaptosomes from rat brain, 100 M antimycin A and 10 M oxamic acid inhibit the32Pi-labeling of phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylinositol-4-phosphate (PIP) by 90% and 95–99% respectively. 10 mM sodium fluoride inhibits the labeling by 50–60% and 10 mM A23187 inhibits the labeling by 63–70%. Phospholipase A2 inhibits the labeling of PIP2 and PIP by 93–94% and stimulates their degradation by 84–92%. Depolarization of synaptosomes with 75 mM K+ or 100 M veratrine decreases the labeling of PIP2 and PIP by 66–74%. The decreased labeling results in large part from the Ca2+-dependent degradation of32P-labeled PIP2 and PIP as shown by pulse-chase experiments in which PIP2 and PIP were prelabeled with32Pi. Depolarization of synaptosomes results in the stimulation of45Ca2+ uptake with the concomitant hydrolysis of PIP and PIP2. Addition of 1 mM Ca2+ accounts for 25% of the enhanced degradation whereas depolarization with 75 mM K+ accounts for 75% of the enhanced degradation of PIP2 and PIP. Depolarization with 100 mM veratrine results in a 223% increase in inositol trisphosphate as evidenced by stimulation of45Ca2+ uptake. EGTA (10mM) and Mg2+ (5–10 mM) inhibit the degradation of PIP and PIP2 and counteract the action of 1 mM Ca2+. Our data demonstrate that45Ca2+, Mg2+, and membrane depolarization play an important role in the turnover of membrane phosphatidylinositols.Abbreviations ATP adenosine triphosphate - Pi inorganic orthophosphate - PIP phosphatidylinositol-4-phosphate - PIP2 phosphatidylinositol-4,5,-bisphosphate - IP3 inositol-1,4,5-trisphosphate  相似文献   

7.
Cell swelling and blebbing has been commonly observed following nanosecond pulsed electric field (nsPEF) exposure. The hypothesized origin of these effects is nanoporation of the plasma membrane (PM) followed by transmembrane diffusion of extracellular fluid and disassembly of cortical actin structures. This investigation will provide evidence that shows passive movement of fluid into the cell through nanopores and increase of intracellular osmotic pressure are not solely responsible for this observed phenomena. We demonstrate that phosphatidylinositol-4,5-bisphosphate (PIP2) depletion and hydrolysis are critical steps in the chain reaction leading to cellular blebbing and swelling. PIP2 is heavily involved in osmoregulation by modulation of ion channels and also serves as an intracellular membrane anchor to cortical actin and phospholipase C (PLC). Given the rather critical role that PIP2 depletion appears to play in the response of cells to nsPEF exposure, it remains unclear how its downstream effects and, specifically, ion channel regulation may contribute to cellular swelling, blebbing, and unknown mechanisms of the lasting “permeabilization” of the PM.  相似文献   

8.
TRP family of proteins are components of unique cation channels that are activated in response to diverse stimuli ranging from growth factor and neurotransmitter stimulation of plasma membrane receptors to a variety of chemical and sensory signals. This review will focus on members of the TRPC sub-family (TRPC1–TRPC7) which currently appear to be the strongest candidates for the enigmatic Ca2+ influx channels that are activated in response to stimulation of plasma membrane receptors which result in phosphatidyl inositol-(4,5)-bisphosphate (PIP2) hydrolysis, generation of IP3 and DAG, and IP3-induced Ca2+ release from the intracellular Ca2+ store via inositol trisphosphate receptor (IP3R). Homomeric or selective heteromeric interactions between TRPC monomers generate distinct channels that contribute to store-operated as well as store-independent Ca2+ entry mechanisms. The former is regulated by the emptying/refilling of internal Ca2+ store(s) while the latter depends on PIP2 hydrolysis (due to changes in PIP2 per se or an increase in diacylglycerol, DAG). Although the exact physiological function of TRPC channels and how they are regulated has not yet been conclusively established, it is clear that a variety of cellular functions are controlled by Ca2+ entry via these channels. Thus, it is critical to understand how cells coordinate the regulation of diverse TRPC channels to elicit specific physiological functions. It is now well established that segregation of TRPC channels mediated by interactions with signaling and scaffolding proteins, determines their localization and regulation in functionally distinct cellular domains. Furthermore, both protein and lipid components of intracellular and plasma membranes contribute to the organization of these microdomains. Such organization serves as a platform for the generation of spatially and temporally dictated [Ca2+]i signals which are critical for precise control of downstream cellular functions.  相似文献   

9.
Kv7.1 to Kv7.5 α-subunits belong to the family of voltage-gated potassium channels (Kv). Assembled with the β-subunit KCNE1, Kv7.1 conducts the slowly activating potassium current IKs, which is one of the major currents underlying repolarization of the cardiac action potential. A known regulator of Kv7 channels is the lipid phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 increases the macroscopic current amplitude by stabilizing the open conformation of 7.1/KCNE1 channels. However, knowledge about the exact nature of the interaction is incomplete. The aim of this study was the identification of the amino acids responsible for the interaction between Kv7.1 and PIP2. We generated 13 charge neutralizing point mutations at the intracellular membrane border and characterized them electrophysiologically in complex with KCNE1 under the influence of diC8-PIP2. Electrophysiological analysis of corresponding long QT syndrome mutants suggested impaired PIP2 regulation as the cause for channel dysfunction. To clarify the underlying structural mechanism of PIP2 binding, molecular dynamics simulations of Kv7.1/KCNE1 complexes containing two PIP2 molecules in each subunit at specific sites were performed. Here, we identified a subset of nine residues participating in the interaction of PIP2 and Kv7.1/KCNE1. These residues may form at least two binding pockets per subunit, leading to the stabilization of channel conformations upon PIP2 binding.  相似文献   

10.
Great skepticism has surrounded the question of whether modulation of voltage-gated Ca2+ channels (VGCCs) by the polyunsaturated free fatty acid arachidonic acid (AA) has any physiological basis. Here we synthesize findings from studies of both native and recombinant channels where micromolar concentrations of AA consistently inhibit both native and recombinant activity by stabilizing VGCCs in one or more closed states. Structural requirements for these inhibitory actions include a chain length of at least 18 carbons and multiple double bonds located near the fatty acid's carboxy terminus. Acting at a second site, AA increases the rate of VGCC activation kinetics, and in CaV2.2 channels, increases current amplitude. We present evidence that phosphatidylinositol 4,5-bisphosphate (PIP2), a palmitoylated accessory subunit (β2a) of VGCCs and AA appear to have overlapping sites of action giving rise to complex channel behavior. Their actions converge in a physiologically relevant manner during muscarinic modulation of VGCCs. We speculate that M1 muscarinic receptors may stimulate multiple lipases to break down the PIP2 associated with VGCCs and leave PIP2's freed fatty acid tails bound to the channels to confer modulation. This unexpectedly simple scheme gives rise to unanticipated predictions and redirects thinking about lipid regulation of VGCCs.  相似文献   

11.
The intracellular calcium signaling processes are tightly regulated to ensure the generation of calcium signals with the specific spatiotemporal characteristics required for regulating various cell functions. Compartmentalization of the molecular components involved in the generation of these signals at discrete intracellular sites ensures the signaling specificity and transduction fidelity of the signal for regulating downstream effector processes. Store-operated calcium entry (SOCE) is ubiquitously present in cells and is critical for essential cell functions in a variety of tissues. SOCE is mediated via plasma membrane Ca2+ channels that are activated when luminal [Ca2+] of the endoplasmic reticulum ([Ca2+]ER) is decreased. The ER-resident stromal interaction molecules, STIM1 and STIM2, respond to decreases in [Ca2+]ER by undergoing conformational changes that cause them to aggregate at the cell periphery in ER-plasma membrane (ER-PM) junctions. At these sites, STIM proteins recruit Orai1 channels and trigger their activation. Importantly, the two STIM proteins concertedly modulate Orai1 function as well as the sensitivity of SOCE to ER-Ca2+ store depletion. Another family of plasma membrane Ca2+ channels, known as the Transient Receptor Potential Canonical (TRPC) channels (TRPC1-7) also contribute to sustained [Ca2+]i elevation. Although Ca2+ signals generated by these channels overlap with those of Orai1, they regulate distinct functions in the cells. Importantly, STIM1 is also required for plasma membrane localization and activation of some TRPCs. In this review, we will discuss various molecular components and factors that govern the activation, regulation and modulation of the Ca2+ signal generated by Ca2+ entry pathways in response to depletion of ER-Ca2+ stores. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.  相似文献   

12.
We used two approaches to characterize the lateral mobility of phosphatidylinositol 4,5-bisphosphate (PIP2) in the plasmalemma of baby hamster kidney and Chinese hamster ovary fibroblasts. First, nitrobenzoxadiazole-labeled C6-phosphatidylcholine and C16-PIP2 were incorporated into plasma membrane “lawns” (∼20 × 30 μm) from these cells and into the outer monolayer of intact cells. Diffusion coefficients determined by fluorescence recovery after photobleaching were similar for the two lipids and were higher in lawns, ∼0.3 μm2/s, than on the cell surface, ∼0.1 μm2/s. For membrane lawns, the fractional recoveries (75–90%) were close to those expected from the fraction of total membrane bleached, and labeling by the probes was several times greater than for intact cells. Second, we analyzed cells expressing M1 muscarinic receptors and green fluorescent protein fused with PIP2-binding pleckstrin-homology domains, Tubby domains or diacylglycerol (DAG)-binding C1 domains. On-cell gigaseal patches were formed with pipette tips >5 μm in diameter. When the agonist carbachol (0.3 mm) was applied either within or outside of the pipette, lipid signals crossed the pipette barrier rapidly in both directions and membrane blebbing occurred on both membrane sides. Accurate simulations of lipid gradients required diffusion coefficients >1 μm2/s. Exogenous DAG also crossed the pipette barrier rapidly. In summary, we found no evidence for restricted diffusion of signaling lipids in these cells. The lower mobility and incorporation of phospholipid at the extracellular leaflet may reflect a more ordered and condensed extracellular monolayer, as expected from previous studies. An erratum to this article can be found at  相似文献   

13.
TransMEMbrane 16A (TMEM16A) is a Ca2+-activated Cl channel that plays critical roles in regulating diverse physiologic processes, including vascular tone, sensory signal transduction, and mucosal secretion. In addition to Ca2+, TMEM16A activation requires the membrane lipid phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). However, the structural determinants mediating this interaction are not clear. Here, we interrogated the parts of the PI(4,5)P2 head group that mediate its interaction with TMEM16A by using patch- and two-electrode voltage-clamp recordings on oocytes from the African clawed frog Xenopus laevis, which endogenously express TMEM16A channels. During continuous application of Ca2+ to excised inside–out patches, we found that TMEM16A-conducted currents decayed shortly after patch excision. Following this rundown, we show that the application of a synthetic PI(4,5)P2 analog produced current recovery. Furthermore, inducible dephosphorylation of PI(4,5)P2 reduces TMEM16A-conducted currents. Application of PIP2 analogs with different phosphate orientations yielded distinct amounts of current recovery, and only lipids that include a phosphate at the 4′ position effectively recovered TMEM16A currents. Taken together, these findings improve our understanding of how PI(4,5)P2 binds to and potentiates TMEM16A channels.  相似文献   

14.
Big or high conductance potassium (BK) channels are activated by voltage and intracellular calcium (Ca2+). Phosphatidylinositol 4,5-bisphosphate (PIP2), a ubiquitous modulator of ion channel activity, has been reported to enhance Ca2+-driven gating of BK channels, but a molecular understanding of this interplay or even of the PIP2 regulation of this channel''s activity remains elusive. Here, we identify structural determinants in the KDRDD loop (which follows the αA helix in the RCK1 domain) to be responsible for the coupling between Ca2+ and PIP2 in regulating BK channel activity. In the absence of Ca2+, RCK1 structural elements limit channel activation through a decrease in the channel''s PIP2 apparent affinity. This inhibitory influence of BK channel activation can be relieved by mutation of residues that (a) connect either the RCK1 Ca2+ coordination site (Asp367 or its flanking basic residues in the KDRDD loop) to the PIP2-interacting residues (Lys392 and Arg393) found in the αB helix or (b) are involved in hydrophobic interactions between the αA and αB helix of the RCK1 domain. In the presence of Ca2+, the RCK1-inhibitory influence of channel-PIP2 interactions and channel activity is relieved by Ca2+ engaging Asp367. Our results demonstrate that, along with Ca2+ and voltage, PIP2 is a third factor critical to the integral control of BK channel activity.  相似文献   

15.
Phosphatidylinositol (PI) 4,5-bisphosphate (PIP2) at the plasma membrane (PM) constitutively controls many cellular functions, and its hydrolysis via receptor stimulation governs cell signaling. The PI transfer protein Nir2 is essential for replenishing PM PIP2 following receptor-induced hydrolysis, but key mechanistic aspects of this process remain elusive. Here, we demonstrate that PI at the membrane of the endoplasmic reticulum (ER) is required for the rapid replenishment of PM PIP2 mediated by Nir2. Nir2 detects PIP2 hydrolysis and translocates to ER-PM junctions via binding to phosphatidic acid. With distinct phosphatidic acid binding abilities and PI transfer protein activities, Nir2 and its homolog Nir3 differentially regulate PIP2 homeostasis in cells during intense receptor stimulation and in the resting state, respectively. Our study reveals that Nir2 and Nir3 work in tandem to achieve different levels of feedback based on the consumption of PM PIP2 and function at ER-PM junctions to mediate nonvesicular lipid transport between the ER and the PM.  相似文献   

16.
Tibor Rohacs   《Cell calcium》2009,45(6):554-565
Transient receptor potential (TRP) channels are involved in a wide range of physiological processes, and characterized by diverse activation mechanisms. Phosphoinositides, especially phosphatidylinositol 4,5-bisphosphate [PIP2, or PtdIns(4,5)P2] recently emerged as regulators of many TRP channels. Several TRP channels require PIP2 for activity, and depletion of the lipid inhibits them. For some TRP channels, however, phosphoinositide regulation seems more complex, both activating and inhibitory effects have been reported. This review will discuss phosphoinositide regulation of members of the TRPM (Melastatin), TRPV (Vanilloid), TRPA (Ankyrin) and TRPP (Polycystin) families. Lipid regulation of TRPC (Canonical) channels is discussed elsewhere in this volume.  相似文献   

17.
In β-cells, syntaxin (Syn)-1A interacts with SUR1 to inhibit ATP-sensitive potassium channels (KATP channels). PIP2 binds the Kir6.2 subunit to open KATP channels. PIP2 also modifies Syn-1A clustering in plasma membrane (PM) that may alter Syn-1A actions on PM proteins like SUR1. Here, we assessed whether the actions of PIP2 on activating KATP channels is contributed by sequestering Syn-1A from binding SUR1. In vitro binding showed that PIP2 dose-dependently disrupted Syn-1A·SUR1 complexes, corroborated by an in vivo Forster resonance energy transfer assay showing disruption of SUR1(-EGFP)/Syn-1A(-mCherry) interaction along with increased Syn-1A cluster formation. Electrophysiological studies of rat β-cells, INS-1, and SUR1/Kir6.2-expressing HEK293 cells showed that PIP2 dose-dependent activation of KATP currents was uniformly reduced by Syn-1A. To unequivocally distinguish between PIP2 actions on Syn-1A and Kir6.2, we employed several strategies. First, we showed that PIP2-insensitive Syn-1A-5RK/A mutant complex with SUR1 could not be disrupted by PIP2, consequently reducing PIP2 activation of KATP channels. Next, Syn-1A·SUR1 complex modulation of KATP channels could be observed at a physiologically low PIP2 concentration that did not disrupt the Syn-1A·SUR1 complex, compared with higher PIP2 concentrations acting directly on Kir6.2. These effects were specific to PIP2 and not observed with physiologic concentrations of other phospholipids. Finally, depleting endogenous PIP2 with polyphosphoinositide phosphatase synaptojanin-1, known to disperse Syn-1A clusters, freed Syn-1A from Syn-1A clusters to bind SUR1, causing inhibition of KATP channels that could no longer be further inhibited by exogenous Syn-1A. These results taken together indicate that PIP2 affects islet β-cell KATP channels not only by its actions on Kir6.2 but also by sequestering Syn-1A to modulate Syn-1A availability and its interactions with SUR1 on PM.  相似文献   

18.
The regulation of M-type (KCNQ [Kv7]) K+ channels by phosphatidylinositol 4,5-bisphosphate (PIP2) has perhaps the best correspondence to physiological signaling, but the site of action and structural motif of PIP2 on these channels have not been established. Using single-channel recordings of chimeras of Kv7.3 and 7.4 channels with highly differential PIP2 sensitivities, we localized a carboxy-terminal inter-helix linker as the primary site of PIP2 action. Point mutants within this linker in Kv7.2 and Kv7.3 identified a conserved cluster of basic residues that interact with the lipid using electrostatic and hydrogen bonds. Homology modeling of this putative PIP2-binding linker in Kv7.2 and Kv7.3 using the solved structure of Kir2.1 and Kir3.1 channels as templates predicts a structure of Kv7.2 and 7.3 very similar to the Kir channels, and to the seven-β-sheet barrel motif common to other PIP2-binding domains. Phosphoinositide-docking simulations predict affinities and interaction energies in accord with the experimental data, and furthermore indicate that the precise identity of residues in the interacting pocket alter channel–PIP2 interactions not only by altering electrostatic energies, but also by allosterically shifting the structure of the lipid-binding surface. The results are likely to shed light on the general structural mechanisms of phosphoinositide regulation of ion channels.  相似文献   

19.
Changes in the level of membrane cholesterol regulate a variety of signaling processes including those mediated by acylated signaling molecules that localize to lipid rafts. Recently several types of ion channels have been shown to have cholesterol-dependent activity and to localize to lipid rafts. In this study, we have investigated the role of cholesterol in the regulation of ion transport in colonic epithelial cells. We observed that methyl-β-cyclodextrin (MβCD), a cholesterol-sequestering molecule, activated transepithelial short circuit current (Isc), but only from the basolateral side. Similar results were obtained with a cholesterol-binding agent, filipin, and with the sphingomyelin-degrading enzyme, sphingomyelinase. Experiments with ΔF508CFTR mutant mice indicated that raft disruption affected CFTR-mediated anion secretion, while pharmacological studies showed that this effect was due to activation of basolateral large conductance Ca2+-activated K+ (BK) channels. Sucrose density gradient centrifugation studies demonstrated that BK channels were normally present in the high-density fraction containing the detergent-insoluble cytoskeleton, and that following treatment with MβCD, BK channels redistributed into detergent-soluble fractions. Our evidence therefore implicates novel high-density cholesterol-enriched plasma membrane microdomains in the modulation of BK channel activation and anion secretion in colonic epithelia.  相似文献   

20.
Pulsatile insulin release from glucose-stimulated β-cells is driven by oscillations of the Ca2+ and cAMP concentrations in the subplasma membrane space ([Ca2+]pm and [cAMP]pm). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP]pm, [Ca2+]pm, and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 β-cells. Elevation of the glucose concentration from 3 to 11 mm induced, after a 2.7-min delay, coordinated oscillations of [Ca2+]pm, [cAMP]pm, and PIP3. Inhibitors of protein kinase A (PKA) markedly diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The reduced PIP3 response could be attributed to accelerated depolarization causing early rise of [Ca2+]pm that preceded the elevation of [cAMP]pm. However, the amplitude of the PIP3 response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP3 oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP3 oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca2+]pm and amplifying [cAMP]pm signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号