首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Pepino mosaic virus (PepMV), a potexvirus first described in 1980 from pepino ( Solanum muricatum ) plants cultivated in Peru, was isolated from diseased tomato plants in the Netherlands in 1999, and is now the cause of an emerging tomato disease in Europe. In a survey of central and southern Peru, 65 wild and four cultivated populations of Lycopersicon , as well as six populations of other species of Solanaceae , were tested for the presence of PepMV and six other viruses. Of the Lycopersicon population sampled, 23 (35.4%) reacted positively in double antibody sandwich (DAS)-enzyme-linked immunosorbent assay (ELISA) with antisera to PepMV. DAS-ELISA tests for PepMV of other solanaceous species were negative, except for one sample of pepino ( Solanum muricatum ). Mechanical inoculation of susceptible Lycopersicon esculentum cv. NE-1 plants with crude sap extracts of 20 of these samples confirmed that 15 of them (from the Departments of Apurimac, Arequipa and Moquegua) were infected with PepMV; these inoculated plants were also DAS-ELISA positive and, in most cases, developed symptoms. Thirteen of the infective extracts were obtained from plants of wild Lycopersicon species (three L. chilense , three L. chmielewskii , two L. parviflorum and five L. peruvianum ) and one each from the cultivated species L. esculentum and S. muricatum . The wild Lycopersicon species are newly reported natural hosts of PepMV. Tests for the other six viruses were negative, except that two samples contained Tomato mosaic virus . Thus, PepMV occurs in Lycopersicon species in central and southern Peru, even in isolated wild populations. These results indicate that the virus is not new to the region and has an efficient mechanism of natural transmission.  相似文献   

3.
Summary Somatic hybrid plants were recovered following fusion of leaf mesophyll protoplasts isolated from tomato (Lycopersicon esculentum) cultivar UC82 with protoplasts isolated from suspension cultured cells of L. chilense, LA 1959. Iodoacetate was used to select against the growth of unfused tomato protoplasts. Two somatic hybrids were recovered in a population of 16 regenerants. No tomato regenerants were recovered; all of the non-hybrid regenerants were L. chilense. The L. chilense protoplast regenerants were tetraploid. The hybrid nature of the plants was verified using species-specific restriction fragment length polymorphisms for the nuclear, chloroplast and mitochondrial genomes. The somatic hybrids had inherited the chloroplast DNA of the tomato parent, and portions of the mitochondrial DNA of the L. chilense parent. The somatic hybrids formed flowers and developed seedless fruit.  相似文献   

4.
A segment of DNA 5' to the transcribed region of an auxin-regulated gene, ARPI, from Lycopersicon esculentum Mill. cv. VFN8 contains a sequence with the structural characteristics of a transposable element. The putative element (Lyt1) is 1340 bp long, has terminal inverted repeats of approximately 235 bp and is flanked by 9-bp direct repeats. Lyt1 has a structure similar to the Robertson's Mutator (Mu) family from maize. The terminal inverted repeats are 80% AT-rich, are 96.6% identical, and define a larger family of repetitive elements. Southern analysis and genomic dot-blot reconstructions detected at least 41 copies of Lyt1-hybridizing sequences in red-fruited Lycopersicon spp. (L. esculentum, L. pimpinellifolium and L. cheesmanii), and 2-8 copies in the green-fruited species (L. hirsutum, L. pennellii, L. peruvianum, L. chilense and L. chmielewskii). There were two to four copies in the Solanum spp. closely allied with the genus Lycopersicon (S. lycopersicoides, S. ochranthum and S. juglandifolium), while the more distantly related Solanum spp. showed little (one to two copies in S. tuberosum) to no (S. quitoense) detectable hybridization under stringent conditions. Linkage analysis in the F(2) progeny of a cross between L. esculentum and L. cheesmanii indicated that at least six loci that hybridize to the Lyt1 sequence are dispersed in the genome. Polymerase chain reaction and Southern analyses revealed that some red-fruited accessions and L. chmielewskii lacked Lyt1 5' to the transcribed region of ARPI. Subsequent sequence analysis indicated that only one copy of the 9-bp direct repeat (target site) was present, suggesting that transposition of the element into the ARPI gene occurred after the divergence of the red-fruited and green-fruited Lycopersicon species.  相似文献   

5.
A set of 154 accessions of nine wild Lycopersicon spp. and five accessions of three closely related Solanum spp. were tested for resistance to tomato powdery mildew ( Oidium lycopersici ). Screening revealed valuable sources of resistance, mainly among L. hirsutum, L. pennellii, L. cheesmanii, L. chilense, L. peruvianum and L. parviflorum. L. esculentum (all ssp.) and L. pimpinellifolium expressed high susceptibility to O. lycopersici inoculation. Results of variance and cluster analysis of responses to O. lycopersici coincide with recent taxonomic classification and genetic relationships within genus Lycopersicon .  相似文献   

6.
The inheritance of chilling tolerance in tomato (Lycopersicon spp.)   总被引:2,自引:0,他引:2  
During the past 25 years, chilling tolerance of the cultivated (chilling-sensitive) tomato Lycopersicon esculentum and its wild, chilling-tolerant relatives L. peruvianum and L. hirsutum (and, less intensively studied, L. chilense) has been the object of several investigations. The final aim of these studies can be seen in the increase in chilling tolerance of the cultivated genotypes. In this review, we will focus on low-temperature effects on photosynthesis and the inheritance of these traits to the offspring of various breeding attempts. While crossing L. peruvianum (male symbol) to L. esculentum (female symbol) so far has brought the most detailed insight with respect to physiological questions, for practical purposes, e.g., the readily cross ability, crossing programmes with L. hirsutum as pollen donor at present seem to be a promising way to achieve higher chilling-tolerant genotypes of the cultivated tomato. This perspective is due to the progress that has been made with respect to the genetic basis of chilling tolerance of Lycopersicon spp. over the past five years.  相似文献   

7.
Acylsugars present in Lycopersicon pennellii are responsible for the high levels of pest resistance often found in this wild tomato taxon. We investigated the inheritance of acylsugar contents in segregating populations of the interspecific tomato cross L. esculentum x L. pennellii and estimated correlations between leaflet acylsugar contents and the levels of mite repellence. Acylsugar contents were quantified with the Sommogy-Nelson colorimetric method in the acessions L. esculentum 'TOM-584' (P(1), low acylsugars), L. pennellii 'LA-716' (P(2), high acylsugars), in the interspecific F(1) (P(1) x P(2)) and in the F(2 )(P(1) x P(2)) generations. Mite resistance was assessed by a repellence test. Broad-sense heritability of acylsugar contents was moderately high (h(2)(b) = 0.476). Frequency distributions in the P(1), P(2), F(1) and F(2) can be explained by the action of a single major locus, with near-complete dominance of the L. esculentum allele for low-acylsugar content over the L. pennellii allele for high content. Indirect selection for high levels of acylsugars in leaflets led to correlated increases in the levels of mite repellency, indicating that acylsugars may be the main factor involved in mite resistance.  相似文献   

8.
9.
10.
Tomato (Lycopersicon esculentum) is susceptible to the powdery mildew Oidium lycopersici, but several wild relatives such as Lycopersicon parviflorum G1.1601 are completely resistant. An F2 population from a cross of Lycopersicon esculentum cv. Moneymaker x Lycopersicon parviflorum G1.1601 was used to map the O. lycopersici resistance by using amplified fragment length polymorphism markers. The resistance was controlled by three quantitative trait loci (QTLs). Ol-qtl1 is on chromosome 6 in the same region as the Ol-1 locus, which is involved in a hypersensitive resistance response to O. lycopersici. Ol-qtl2 and Ol-qtl3 are located on chromosome 12, separated by 25 cM, in the vicinity of the Lv locus conferring resistance to another powdery mildew species, Leveillula taurica. The three QTLs, jointly explaining 68% of the phenotypic variation, were confirmed by testing F3 progenies. A set of polymerase chain reaction-based cleaved amplified polymorphic sequence and sequence characterized amplified region markers was generated for efficient monitoring of the target QTL genomic regions in marker assisted selection. The possible relationship between genes underlying major and partial resistance for tomato powdery mildew is discussed.  相似文献   

11.
Grant WF  Owens ET 《Mutation research》2002,511(3):207-237
From a literature survey, 21 chemicals are tabulated that have been evaluated in 39 assays for their clastogenic effects in Lycopersicon. Nineteen of the 21 chemicals are reported as giving a positive reaction (i.e. causing chromosome aberrations). Of these, five are reported positive with a dose response. In addition, 23 assays have been recorded for six types of radiation, all of which reacted positively. The results of 102 assays with 32 chemicals and seven types of radiation tested for the induction of gene mutations are tabulated, as well as 20 chemicals and/or radiation in combined treatments. The Lycopersicon esculentum (2n=24) assay is a very good plant bioassay for assessing chromosome damage both in mitosis and meiosis and for somatic mutations induced by chemicals and radiations. The Lycopersicon bioassay has been shown to be as sensitive and as specific an assay as other plant genotoxicity assays, such as Hordeum vulgare, Vicia faba, Crepis capillaris, Pisum sativum and Allium cepa and should be considered in further studies in assessing clastogenicity. Tests using L. esculentum can be made for a spectrum of mutant phenotypes of which many are identifiable in young seedlings.  相似文献   

12.
Leaf mesophyll protoplasts of Lycopersicon esculentum were fused with suspension-culture-derived protoplasts of Solanum lycopersicoides by a PEG treatment. Both species have the same chromosome number (2n = 2x = 24). The hybrid calli were selected using the full selection method - kanamycin resistance and culture conditions critical for L. esculentum protoplast divisions. The genomic in situ hybridization analyses indicated a hypo- and hypertetraploid character of the hybrid plant with a majority of S. lycopersicoides chromosomes and a variation in chromosome number from 46 to 53. The hybrids contained a transgene derived from L. esculentum, as shown by Southern blot hybridization and PCR analyses. Their mitochondria were derived from the wild species, S. lycopersicoides. More than 60 regenerated plants were transferred into the greenhouse. They grew very slowly and were not able to flower for almost one year. The main morphological characters of the hybrids included a single shoot and small, dark-green leaves with strongly wrinkled blades. The reasons for nuclear genome asymmetry between hybrids and the possibilities of using them in a genetic and breeding programme are discussed in this paper.  相似文献   

13.
Protein synthesis and translatable mRNA population changes induced during water stress were studied in leaves of a drought-resistant wild relative of tomato, Lycopersicon chilense, using one- and two-dimensional polyacrylamide gel electrophoresis. Under our experimental conditions, water deficit did not significantly affect total protein synthesis capacity. However, it induced biphasic synthesis of a new set of proteins. These newly synthesized proteins resumed to control levels upon rehydration of the plants. Certain drought-induced proteins also accumulated in leaves subjected to heat shock (39 degrees C) or exogenous abscisic acid (ABA, 1 mM) treatments. A cDNA library was constructed using poly(A)+ RNA from leaves of plants exposed to drought stress for 4 days. Differential screening of the library identified three groups of clones corresponding to drought- and ABA-induced mRNAs. Northern blot analysis showed that the genes of selected clones respond differently to the different environmental stresses. Our data clearly demonstrate that water stress alters gene expression in L. chilense plants resulting in the synthesis of new proteins, of which several respond to high temperature stress and others to an osmotic effect. These responses are in part modulated by ABA.  相似文献   

14.
Susceptibility of 33 Lycopersicon species and varieties to Tobacco mosaic virus (TMV) and Cucumber mosaic virus (CMV) were studied. Plants were mechanically inoculated with the C/U1 strain of TMV and U/246 strain of CMV. Virus infection was checked by symptomatology, DAS ELISA and back inoculation (biotest). All the studied Lycopersicon species and varieties were susceptible to TMV-C/U1. L. esculentum Mill. convar. infiniens Lehm. var. flammatum Lehm., L. esculentum Mill. convar. fruticosum Lehm. var. speciosum Lehm. and L. esculentum Mill. convar. infiniens Lehm. var. validum Bail. showed extreme resistance to CMV-U/246. The other 30 species and varieties were susceptible to CMV-U/246. New compatible and incompatible host-virus relations have been reported. The extreme resistant Lycopersicon varieties could be used as resistance sources in tomato breeding.  相似文献   

15.
Chetelat RT  Meglic V  Cisneros P 《Genetics》2000,154(2):857-867
F(1) hybrids between the cultivated tomato (Lycopersicon esculentum) and the wild nightshade Solanum lycopersicoides are male sterile and unilaterally incompatible, breeding barriers that impede further crosses to tomato. Meiosis is disrupted in 2x hybrids, with reduced chiasma formation and frequent univalents, but is normal in allotetraploid hybrids, indicating the genomes are homeologous. In this study, a partially male-fertile F(1) was backcrossed to tomato, producing the first BC(1) population suitable for genetic mapping from this cross. BC(1) plants were genotyped at marker loci to study the transmission of wild alleles and to measure rates of homeologous recombination. The pattern of segregation distortion, in favor of homozygotes on chromosomes 2 and 5 and heterozygotes on chromosomes 6 and 9, suggested linkage to a small number of loci under selection on each chromosome. Genome ratios nonetheless fit Mendelian expectations. Resulting genetic maps were essentially colinear with existing tomato maps but showed an overall reduction in recombination of approximately 27%. Recombination suppression was observed for all chromosomes except 9 and 12, affected both proximal and distal regions, and was most severe on chromosome 10 (70% reduction). Recombination between markers on the long arm of this chromosome was completely eliminated, suggesting a lack of colinearity between S. lycopersicoides and L. esculentum homeologues in this region. Results are discussed with respect to phylogenetic relationships between the species and their potential use for studies of homeologous pairing and recombination in a diploid plant genome.  相似文献   

16.
17.
High frequency of streptomycin resistant variants of Lycopersicon esculentum were isolated on selective shoot regeneration medium supplemented with IAA (0.5 mg/L), zeatin (1.5 mg/L) and streptomycin sulphate (500 mg/L). Nonmutagenized (controls) and NMU treated cotyledons were placed on shoot regeneration medium supplemented with antibiotic streptomycin. Resistant shoots appeared at a high frequency in mutagenized cotyledons, whereas in controls morphogenesis was suppressed, accompanied by bleaching. Shoot regeneration occurred from the nodular tissues developed at the cut ends of cotyledons. Resistant shoots developed into complete plantlets on rooting medium containing selective concentration of antibiotic. Stability of streptomycin resistance was confirmed by leaf assay and reciprocal crosses between streptomycin-resistant and sensitive plants.  相似文献   

18.
Hypocotyl and root growth elongation of etiolated seedlings was measured non-destructively for the wild tomato accessions LA 460 ( Lycopersicon chilense Dun.), PI 126435, PI 127831 and PI 127832 ( L. peruvianum Mill.) and controls PI 120256 and T3 ( L. esculentum Mill.) on slant boards at 10, 15 and 20°C. Both hypocotyl and root elongation over time were fitted by a logistic growth function with three parameters estimated for each seedling by non-linear least squares regression. Analysis of variance of these equation parameters indicated linear decreases of both hypocotyl and root growth rate parameters with temperature. All four wild accessions maintained greater hypocotyl growth rate parameters at 10°C than the fast-germinating cultivated accession PI 120256, but not significantly greater than T3. Hypocotyl growth rates of the wild accessions were less inhibited at 10°C relative to 20°C than were either cultivated accession. These results suggest that these wild accessions have greater chilling tolerance than cultivated controls for early seedling growth, and may have potential use for genetically improving emergence times for tomatoes sown in cold soil.  相似文献   

19.
The wild nightshades Solanum lycopersicoides and Solanum sitiens are closely affiliated with the tomatoes (Lycopersicon spp.). Intergeneric hybridization with cultivated tomato (Lycopersicon esculentum) is impeded by strong reproductive barriers including hybrid sterility and suppressed recombination. Conservation of genome structure between these nightshades and tomato was studied by construction of a genetic map from F2 S. sitiens x S. lycopersicoides and comparison with existing maps of tomato. Owing to self-incompatibility of the F1, two hybrid plants were crossed to obtain a population of 82 F2 individuals. Using 166 previously mapped RFLP markers and 5 restriction enzymes, 101 loci polymorphic in the S. sitiens x S. lycopersicoides population were identified. Analysis of linkage between the markers resulted in a map with 12 linkage groups covering 1192 cM and one unlinked marker. Recombination rates were similar to those observed in tomato; however, significant segregation distortion was observed for markers on 7 out of the 12 chromosomes. All chromosomes were colinear with the tomato map, except for chromosome 10, where a paracentric inversion on the long arm was detected. In this region, S. sitiens and S. lycopersicoides share the same chromosomal configuration previously reported for potato (S. tuberosum) and pepper (Capsicum), suggesting that of tomato is derived. The 10L inversion explains the lack of recombination detected among homeologous chromosomes of intergeneric hybrids in this region. On this basis, we recognize two principle genomes, designated L for the Lycopersicon spp., and S for S. lycopersicoides and S. sitiens, the first examples of structural differentiation between tomato and its cross-compatible wild relatives.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号